Abstract:
An implantable device for body tissue, including an electrical subsystem that flexes within and interfaces with body tissue and a carrier that operates in the following two modes: provides structural support for the electrical subsystem during implantation of the device in body tissue and allows flexing of the electrical subsystem after implantation of the device in body tissue. The implantable device is preferably designed to be implanted into the brain, spinal cord, peripheral nerve, muscle, or any other suitable anatomical location. The implantable device, however, may be alternatively used in any suitable environment and for any suitable reason.
Abstract:
An optical electrode having a plurality of electrodes, including a recording electrode having a roughened surface and an optical light source configured to emit light, wherein at least a portion of the light impinges on the recording electrode. Also disclosed are methods of producing an optical electrode and an opto-electronic neural interface system.
Abstract:
An optical electrode having a plurality of electrodes, including a recording electrode having a roughened surface and an optical light source configured to emit light, wherein at least a portion of the light impinges on the recording electrode. Also disclosed are methods of producing an optical electrode and an opto-electronic neural interface system.
Abstract:
A method for providing a neural interface system. At least one primary metallization layer is deposited on a substrate. The primary metallization layer has a thickness. A monolayer of nanospheres is deposited in a substantially uniform distribution. The nanospheres contact an upper surface of the primary metallization layer. The upper surface of the primary metallization layer not contacted by the nanospheres is treated to form a plurality of undulating structures having a substantially uniform arrangement. The treating comprises etching recesses part-way through the thickness of exposed portions of the primary metallization layer from the upper surface thereof.
Abstract:
An implantable device for body tissue, including an electrical subsystem that flexes within and interfaces with body tissue and a carrier that operates in the following two modes: provides structural support for the electrical subsystem during implantation of the device in body tissue and allows flexing of the electrical subsystem after implantation of the device in body tissue. The implantable device is preferably designed to be implanted into the brain, spinal cord, peripheral nerve, muscle, or any other suitable anatomical location. The implantable device, however, may be alternatively used in any suitable environment and for any suitable reason.
Abstract:
The implantable electrode system of the preferred embodiments includes a conductor, an interconnect coupled to the conductor, an insulator that insulates the interconnect, and an anchor that is connected to both the conductor and the insulating element. The anchor is mechanically interlocked with at least one of the conductor and the insulator.
Abstract:
A three-dimensional neural probe electrode array system is described. Planar probes are microfabricated and electrically connected to flexible micro-machined ribbon cables using a rivet bonding technique. The distal end of each cable is connected to a probe with the proximal end of the cable being customized for connection to a printed circuit board. Final assembly consists of combining multiple such assemblies into a single structure. Each of the two-dimensional neural probe arrays is positioned into a micro-machined platform that provides mechanical support and alignment for each array. Lastly, a micro-machined cap is placed on top of each neural electrode probe and cable assembly to protect them from damage during shipping and subsequent use. The cap provides a relatively planar surface for attachment of a computer controlled inserter for precise insertion into the tissue.
Abstract:
An improved deformable carrier or connector for an implantable neural interface device is described. The neural interface device comprises a carrier supporting at least one electrode array. The carrier comprises a tubular sidewall extending from a proximal carrier portion to a distal carrier portion. At least one deformable segment is provided in the carrier sidewall. The deformable segment is more pliable than the remainder of the carrier sidewall to preferably move in response to forces imparted on the carrier and the electrode array by the shifting forces in body tissue. The deformable segment takes the form of a thinned sidewall segment or a slitted wall segment.
Abstract:
The method of the preferred embodiments includes the steps of providing a base having a frame portion and a center portion; building a preliminary structure coupled to the base; removing a portion of the preliminary structure to define a series of devices and a plurality of bridges; removing the center portion of the base such that the frame portion defines an open region, wherein the plurality of bridges suspend the series of devices in the open region defined by the frame; and encapsulating the series of devices. The method is preferably designed for the manufacture of semiconductor devices, and more specifically for the manufacture of encapsulated implantable electrodes. The method, however, may be alternatively used in any suitable environment and for any suitable reason.
Abstract:
An electrode array includes a fan-shaped substrate member. The fan-shaped substrate member includes a dielectric material and that has a triangular portion with a convexly curved base from which a first side and an opposite second side extend to a truncated apex that includes a concavely curved surface. An elongated lead member includes the dielectric material and extends from the base adjacent to a selected one of the first side and the second side. The elongated lead member is contiguous with the fan-shaped substrate member. Each of a plurality of wires is embedded in the fan-shaped substrate member and the elongated lead member. Each of a corresponding plurality of electrodes is electrically coupled to a different one of the plurality of wires. Each of the corresponding plurality of electrodes includes an exposed surface.