Abstract:
A method and apparatus for home Node-B (HNB) mobility with a local IP access (LIPA) packet data network (PDN) connection are described. A target home node-B (HNB) may receive a handover request message from a source HNB to handover a wireless transmit/receive unit (WTRU). A path switch request may be transmitted to a local gateway (LGW) to change a downlink data path towards the target HNB in response to the handover request message. The LGW may act as a mobility management and local mobility anchor for the handover; and informing an HNB gateway (GW) about the handover so that the downlink data path for core network (CN) traffic is modified towards the target HNB.
Abstract:
Systems and methods for reducing interference and saving power for home Node Bs are disclosed. Home Node Bs can be configured to remain in sleep mode until needed based on various criteria, periodically operating transmit and receive components in order to detect mobile devices that may need the services of the home Node B. Mobile devices can indicate one or several target home Node Bs using one or more node identifiers within a proximity indication message. Closed subscriber group identifiers and membership data may also be included in a proximity indication message. Node or cell identities, along with membership data, may be stored in a fingerprint database or white-list on a mobile device.
Abstract:
Disclosed herein are systems and methods for managing home nodeB (HNB) mobility in forward access channel (Cell_FACH) states. According to an aspect, a method may be implemented at a Wireless Transmit/Receive Unit (WTRU). The method may include determining whether to communicate an indication to a network node for extended measurement occasion. Further, the method may include communicating the indication to the network node in response to determining to communicate the indication.
Abstract:
Techniques for performing a handover in a network with a relay node (RN) are disclosed. The RN is a node deployed between an eNodeB (eNB) and a wireless transmit/receive unit (WTRU). The RN receives data from one of the eNB and the WTRU and forwards it to the other. The RN receives a packet data convergence protocol (PDCP) protocol data unit (PDU) from a serving donor evolved Node-B (DeNB) and transmits it to the WTRU. The RN makes a handover decision based on the measurement report received from the WTRU. After making a handover decision, the RN sends a handover request or a control message to the serving DeNB including a first unsuccessfully transmitted PDCP sequence number (SN). The serving DeNB then discards a PDCP PDU with an SN older than the first unsuccessfully transmitted PDCP SN.
Abstract:
A method and apparatus for performing non-voice emergency services (NOVES) between a wireless transmit/receive unit (WTRU) and a public safety answering point (PSAP) is disclosed. A NOVES session may be initiated by sending a NOVES initiation request message that includes information relating to the NOVES capabilities of the WTRU, and information relating to an emergency situation. The information relating to the NOVES capabilities of the WTRU may include an indication of whether the WTRU supports a fake power-off mode, or whether the WTRU supports PSAP control. Other methods are disclosed that include a method for a PSAP combining a multiple NOVES sessions, and a method for handing over a NOVES session having multiple media streams.
Abstract:
Methods are presented wherein a WTRU may determine, based on measurements, that it is a victim of interference from another cell such a closed subscriber group (CSG) cell. In addition, methods are presented for the UE to inform the CSG cell that UE is present and is a victim UE. Methods for informing the CSG cell may include the grant of temporary membership to a victim UE, the use of a connected WTRU as a relay, and/or indicating victim status in a control message. The indication may trigger an interference management procedure. Methods for the WTRU to stop interference management at the CSG cell, methods to allow the use of a training period by the CSG eNB to allow for non-CSG WTRUs to report their presence, and methods to indicate how to perform UE Victim Indication are also presented.
Abstract:
In a wireless communication system using a reference channel used for error rate measurement and associated with a plurality of transport channels multiplexed on a coded composite transport channel (CCTrCH), a method is employed for reselection of the reference channel from favorable candidate transport channels. A channel is initially selected from the plurality of multiplexed channels as the reference channel. Channels are monitored based on quantitative data content criteria to determine whether an ON or OFF state exists. A different channel is selected from the plurality of multiplexed channels as the reselected RTrCH when a better candidate transport channel in the ON state becomes available, or when the monitored RTrCH reflects an OFF state.
Abstract:
Method and apparatus efficiently signal and use resources for wireless communications supporting circuit switched (CS) and packet switched sessions (PS). Signaling and interaction between the wireless transmit/receive unit (WTRU), and various network entities, such as the Mobility Management Entity (MME), the Visitor Location Register (VLR), and Base Stations (BS), are used to implement circuit switched fall back (CSFB) in a PS system.
Abstract:
Disclosed herein are techniques for inhibition of allowed closed subscriber group list. According to an aspect, a method may be implemented at a wireless transmit/receive unit (WTRU). The method may include identifying a public land mobile network (PLMN) in which the WTRU is operating. Further, the method may include controlling closed group subscriber (CSG) selection based on the identified PLMN. For example, on a per PLMN basis, the WTRU may display to the user all CSGs or only CSGs in an operator CSG list.
Abstract:
Methods, apparatus, and systems using almost blank subframes patterns are disclosed. Different ABS patterns and triggers are described for enabling a wireless transmit/receive unit (WTRU) to obtain ABS patterns. One representative method of scheduling operations by a wireless transmit/receive unit (WTRU) may include the WTRU receiving information indicating the ABS pattern with a plurality of ABS intervals of an interfering cell; determining timing associated with the ABS intervals of the interfering cell in accordance with the indicated ABS pattern; and scheduling a measurement opportunity, a transmission opportunity or a reception opportunity during the ABS intervals of the interfering cell.