Abstract:
A circuit assembly which includes a semiconductor die having substantially parallel opposing first and second surfaces and at least one electrical contact mounted on the first surface. A first element having substantially parallel opposing first and second surfaces and at least one electrical contact mounted on one of its surfaces is mounted on and at least partially supported at its second surface by the first surface of the semiconductor die. The first element is positioned such that the semiconductor die electrical contact is exposed. A fine wire conductor having first and second ends is connected at its first end to either the semiconductor die electrical contact or the first element electrical contact. A method of manufacturing this circuit assembly is also disclosed.
Abstract:
Stiffeners in are provided in a flexible printed circuit to prevent damages to leads and traces of the flexible circuit caused by bending, folding and other stresses.
Abstract:
An improved substrate or cover plate design with a groove for effective singulation of individual display apparatus. In one embodiment, the display apparatus comprises a prefabricated groove on an inside face of a substrate or cover plate to facilitate separation of a MEMS device from a plurality of MEMS devices formed a substrate. In some embodiments, the prefabricated grooves make breaking at pseudo scribe lines simple by thinning and weakening the substrate or cover plate at a scribe zone and act as an improved guide for breaking. Scribe cut relief preserves components, structural integrity, and produces a clean break without inducing excessive or unwanted stresses into the MEMS core and ensures no damage at the panel ledge for subsequent interconnect assembly.
Abstract:
Stiffeners in are provided in a flexible printed circuit to prevent damages to leads and traces of the flexible circuit caused by bending, folding and other stresses.
Abstract:
This disclosure provides systems, methods and apparatus for a combined sensor device. In some implementations, a combined sensor device includes a wrap-around configuration wherein an upper flexible substrate has patterned conductive material on an extended portion to allow routing of signal lines, electrical ground, and power. One or more integrated circuits or passive components, which may include connecting sockets, may be mounted onto the flexible layer to reduce cost and complexity. Such implementations may eliminate a flex cable and may allow a bezel-less configuration.
Abstract:
This disclosure provides systems and methods for forming a metal thin film shield over a thin film cap to protect electromechanical systems devices in a cavity beneath. In one aspect, a dual or multi layer thin film structure is used to seal a electromechanical device. For example, a metal thin film shield can be mated over an oxide thin film cap to encapsulate the electromechanical device and prevent degradation due to wafer thinning, dicing and package assembly induced stresses, thereby strengthening the survivability of the electromechanical device in the encapsulated cavity. During redistribution layer processing, a metal thin film shield, such as a copper layer, is formed over the wafer surface, patterned and metalized.
Abstract:
This disclosure provides systems, methods and apparatus for a combined sensor device. In some implementations, a combined sensor device includes a wrap-around configuration wherein an upper flexible substrate has patterned conductive material on an extended portion to allow routing of signal lines, electrical ground, and power. One or more integrated circuits or passive components, which may include connecting sockets, may be mounted onto the flexible layer to reduce cost and complexity. Such implementations may eliminate a flex cable and may allow a bezel-less configuration.
Abstract:
Various embodiments described herein involve making connections with the display leads on more than one side of the display array, e.g., on 2 sides, 3 sides or all 4 sides of the display array. By making connections with the display leads on more than one side of the display array, the available area for bonding leads and control circuitry may be increased. The driver chip(s), discrete components, and other active components necessary for addressing the display panel may be attached to the top or the bottom of a flexible printed circuit (“FPC”) or a similar device. Some embodiments involve attaching an FPC to the display such that that the backplate is substantially encased by the FPC.
Abstract:
A lead frame for use in an integrated circuit package is disclosed herein. The lead frame includes a magnetic component winding wherein the winding is formed as an integral part of the lead frame. Additional windings may be formed as an integral part of the lead frame and then folded into position over the first winding to form a multiple layered magnetic component winding. In one embodiment, the lead frame based winding is coated with a magnetic material to form a lead frame based inductor. There is also disclosed a method of producing a lead frame including a magnetic component winding wherein the winding is formed as an integral part of the lead frame.
Abstract:
The invention provides a method and apparatus for picking a separated semiconductor die 128 from a wafer and placing it on a die attach pad 144 for bonding thereto. In a preferred embodiment, the apparatus comprises a die collet having a body 124 with a proximal end 123 and a distal end 125; at least one pair of spaced-apart walls 136 extending distally from the distal end of the body and having opposing faces 181 defining an aperture 126, the faces of the walls being sloped such that a distal portion of the aperture is wider than the die and a proximal portion of the aperture is narrower than the die; a recess 152 on the faces of the walls extending substantially the length of the die, the recess having a distally-facing surface 154 for contacting at least a portion of the top side 138 of the die; and means for holding the die in the aperture, usually including a vacuum port 128. The method comprises providing a collet like the aforementioned; positioning the aperture 126 over a die 120; exerting a vacuum pressure through the vacuum port 128 to retain the die in the aperture such that a portion of the top side contacts the distally-facing surface 154 of the recess 152; positioning the die over the pad 144 such that the bottom side of the die is parallel to the pad; and discontinuing the vacuum pressure to release the die from the aperture.