Abstract:
A light trap, a device for coupling a first beam path to a second beam path, and an illumination device for an optical observation device, as well as an optical observation device. The light trap is for eliminating or preventing stray light, e.g., in the form of scattered light. In order to be able to further improve the elimination of disruptive stray light in the form of scattered light, the light trap is configured in a special way. It has a filter element, particularly a neutral filter element, which is characterized in that an incident light face of the filter element has a concave radius, whereby the incident light face has a specific curvature.
Abstract:
Among other things, an illumination device (10) is described for one, two or more observation beam paths, each with an observation device having an observation beam bundle, in particular for an operating microscope, having at least one light source (12) for producing at least one illumination beam bundle for illuminating an object to be observed (13), in particular, an eye to be observed, wherein the at least one illumination beam bundle runs coaxially to an observation beam bundle. It is provided according to the invention, in order to be able to suppress disruptive reflections, that illumination device (10) has an illumination optics (11) that is constructed according to the Köhler principle of illumination, and in which at least one reflection diaphragm (18) is provided in order to avoid light reflected from the surface of an objective element (19). In addition, a correspondingly improved observation device is described.
Abstract:
A braking system includes a brake pad that is coupled to a slider assembly that moves linearly within a guide. The slider assembly and guide are coupled to a first brake. A second brake actuator is coupled to the slider assembly, the guide and a second brake. When the first brake is actuated, the slider assembly is pressed against a rotating braking surface and the friction of the brake pad against the rotating braking surface can cause the slider assembly to move within the guide which actuates the second brake actuator. The second brake actuator then actuates the second brake. When the first brake is released, the slider assembly is removed from the rotating braking surface and the second brake actuator is released which releases the second brake.
Abstract:
The invention relates to a surgical microscope (1) having a microscope main objective (12) for the visualization of an object plane (45) in an object region (9). The microscope main objective (12) is passed through by a first stereoscopic component beam path (5) and by a second stereoscopic component beam path (7). The ophthalmologic surgical microscope (1) includes an adjustable illuminating arrangement (15) which makes illuminating light available. The illuminating arrangement (15) has an illuminating optic having a beam deflecting unit (19) which is mounted on the side of the microscope main objective (12) facing away from the object region (9) in order to direct the illuminating light through the microscope main objective (12) to the object region (9). In a first position of the illuminating arrangement (15), the illuminating light passes through the cross sectional area (89) of the microscope main objective (12) in an area section (91, 92), which at least partially surrounds the optical axis of the first stereoscopic component beam path (5) and/or the optical axis of the second stereoscopic component beam path (7). According to the invention, in an at least one further position of the illuminating arrangement (15), the illuminating light passes through the cross sectional area (89) of the microscope main objective (12) in a surface section (93, 95) whose area centroid (97, 99) is spaced from the optical axis of a stereoscopic component beam path (5, 7) by more than the stereo basis (101) of the two stereoscopic component beam paths (5, 7) from the optical axis of the other stereoscopic component beam paths (7, 5).
Abstract:
First of all, the present invention relates to a light trap (20) for eliminating or preventing stray light, e.g., in the form of scattered light. In addition, the invention relates to a device (10) for coupling a first beam path (34) to a second beam path (42)*. Finally, the invention also relates to an illumination device (30) for an optical observation device as well as an optical observation device. In order to be able to further improve the elimination of disruptive stray light in the form of scattered light, light trap (20) is configured in a special way. It has a filter element (21), particularly a neutral filter element, which is characterized in that incident light face (22) of filter element (21) has a concave radius, whereby incident light face (22) has a specific curvature. * sic; second beam path (41)?—Trans. Note
Abstract:
A lighting device (40) is described for an observation device (10), in particular for an ophthalmologic operating microscope, as well as such an observation device (10). The lighting device (40) has a light source (41) as well as a number of optical components, which are provided between light source (41) and an objective element (11). The optical components are designed according to the invention in such a way that the imaging of the lighting pupil (43) and the observation pupils is produced on the fundus of the eye (30). In this way, an exactly defined interaction of the lighting beam path (56) with an observation beam path is made possible, whereby practical requirements can be fulfilled relative to the homogeneity of the red reflex with simultaneous sufficiently good contrasting.
Abstract:
The present invention, among other things, relates to a front-lens attachment (20) for an optical observation device (10), in particular for a microscope. The front-lens attachment (20) has a retaining element (38) that has a retaining element (32), on which at least one lens element (33, 34) is disposed. Further, it provides a positioning device (21) for positioning the retaining element (32) and the at least one lens element (33, 34) disposed thereon, relative to the optical observation device (10), whereby retaining device (32) is disposed on positioning device (21). Finally, a fastening means (35) for fastening the retaining device (38) to the front-lens attachment (20) is provided. In order to be able to provide such a front-lens attachment (20) in a structurally simple and cost-effective manner, it is provided, for example, that positioning device (21) has at least two positioning components (22, 28), which are joined together via a joint (31).
Abstract:
A surgical microscope (100) has viewing beams (109a, 109b) passing through a microscope imaging optic which includes a microscope main objective system (101) having a magnification system of variable magnification. The microscope imaging optic transposes a convergent viewing beam (109a, 109b) from the object region (114) into a parallel beam. The surgical microscope includes an OCT-system (120) for examining the object region (114). The OCT-system (120) makes available an OCT-scanning beam (190) which is guided through the microscope imaging optic.
Abstract:
A surgical microscope (100) has a viewing beam path for main viewing and a secondary beam path (106) for viewing by another person. The surgical microscope (100) has a microscope main objective (101) through which the viewing beam path for main viewing and the viewing beam path (106) for secondary viewing pass. The surgical microscope (100) includes an OCT-system (120) for examining an object region. The OCT-system (120) includes an OCT-scanning beam (123) which is guided through the microscope main objective (101). In the viewing beam path (106) for secondary viewing, an in-coupling element (150) is provided to couple the OCT-scanning beam (123) into the viewing beam path (106) for secondary viewing and to guide the same through the microscope main objective (101) to the object region (108).
Abstract:
The invention relates to an image reversion system (500) which enables an image reversion and beam transposition of a plurality of observation beam paths (503a, 503b, 504a and 504b) to be carried out simultaneously. The system includes at least one Porro prism system and is designed in such a way that it can be arranged in a convergent beam path. The inventive system is suitable as an image reversion system in an ancillary module for operational microscopes used in ophthalmoscopy due to the low overall height thereof.