Abstract:
A fiber optic connector and cable assembly is disclosed. The assembly includes a fiber optic connector and a fiber optic cable. The fiber optic cable can be coupled to the assembly at a demarcation section. All components of the fiber optic cable (e.g., fiber, strength members, jacket, etc.) are fixed relative to each other and relative to the fiber optic connector at the demarcation section. The demarcation section may be located on a boot mounted at a proximal end of the fiber optic connector. For example, the demarcation section may be located at a proximal end of the boot.
Abstract:
A cable fanout defines an entry location for receiving a multi-fiber cable at one end, and an opposite end defining an exit location for individual cables. The cable fanout includes an inner housing having a first end defining a plurality of openings for the individual cables, and first and second side extensions extending in a longitudinal direction. The cable fanout further includes an outer housing including first and second identical halves enclosing the inner housing. One of the halves and the inner housing cooperating to form a pocket for holding epoxy around exposed fibers in the fanout during assembly. In a preferred embodiment, a snap arrangement mounts the first and second outer housing halves together.
Abstract:
A telecommunications assembly includes a chassis and a plurality of fiber optic splitter modules mounted within the chassis. Each splitter module includes at least one fiber optic connector. Within an interior of the chassis are positioned at least one fiber optic adapter. Inserting the splitter module through a front opening of the chassis at a mounting location positions the connector of the splitter module for insertion into and mating with the adapter of the chassis. The adapters mounted within the interior of the chassis are integrally formed as part of a removable adapter assembly. A method of mounting a fiber optic splitter module within a telecommunications chassis is also disclosed.
Abstract:
A telecommunications assembly includes a chassis and a plurality of fiber optic splitter modules mounted within the chassis. Each splitter module includes at least one fiber optic connector. Within an interior of the chassis are positioned at least one fiber optic adapter. Inserting the splitter module through a front opening of the chassis at a mounting location positions the connector of the splitter module for insertion into and mating with the adapter of the chassis. The adapters mounted within the interior of the chassis are integrally formed as part of a removable adapter assembly. A method of mounting a fiber optic splitter module within a telecommunications chassis is also disclosed.
Abstract:
A telecommunications assembly includes a chassis and a plurality of fiber optic splitter modules mounted within the chassis. Each splitter module includes at least one fiber optic connector. Within an interior of the chassis are positioned at least one fiber optic adapter. Inserting the splitter module through a front opening of the chassis at a mounting location positions the connector of the splitter module for insertion into and mating with the adapter of the chassis. The adapters mounted within the interior of the chassis are integrally formed as part of a removable adapter assembly. A method of mounting a fiber optic splitter module within a telecommunications chassis is also disclosed.
Abstract:
A telecommunications assembly includes a chassis and a plurality of fiber optic splitter modules mounted within the chassis. Each splitter module includes at least one fiber optic connector. Within an interior of the chassis are positioned at least one fiber optic adapter. Inserting the splitter module through a front opening of the chassis at a mounting location positions the connector of the splitter module for insertion into and mating with the adapter of the chassis. The adapters mounted within the interior of the chassis are integrally formed as part of a removable adapter assembly. A method of mounting a fiber optic splitter module within a telecommunications chassis is also disclosed.
Abstract:
A tool for engaging a telecommunications connector within a slot so that a releasable latch of the connector is released by the tool. The tool may be used to remove a telecommunications connector from a mating opening of a receptacle or may be used to insert a connector within a receptacle.
Abstract:
A hinge clip apparatus for selectively engaging/disengaging a cover includes a base, a hinge defining a hinge axis, and a plate. The plate is pivotally moveable relative to the base along the hinge which connects the base to the plate. The plate includes a hole and a spring member extending through the hole. The spring member has an extension tab capable of engaging the cover and disengaging from the cover when the spring member is compressed.
Abstract:
A tool for engaging a telecommunications connector within a slot so that a releasable latch of the connector is released by the tool. The tool may be used to remove a telecommunications connector from a mating opening of a receptacle or may be used to insert a connector within a receptacle.
Abstract:
A telecommunications assembly including a housing and a plurality of modules mounted within the housing. The modules includes a rear face in which is mounted at least one fiber optic connector. Within an interior of the housing are positioned at least one fiber optic adapters. Inserting the module through a front opening of the housing at a mounting location positions the connector of the module for insertion into and mating with the adapter of the housing. The adapters within the interior of the housing are mounted to a removable holder. A method of mounting a telecommunications module within a chassis.