Abstract:
In a method for treating a carcinoma in a patient, a medicine is administered via the blood stream of the patient that appears, to the patient's immune system, that tissue of the carcinoma is an inflammation source. The medicine employs two active components that are coupled to each other in a form allowing administration of the two active components to the carcinoma via the blood stream of the patient. A first of the active components is at least one coupling molecule that specifically tethers to a target molecule formed by cancer tissue of the carcinoma. A second of the active ingredients is at least one signal molecule typical to inflammation, or at least one originating molecule encoding such a signal molecule, that induces the immune system of the body to attack the cancer cells.
Abstract:
In a shockwave system with a shockwave source for treatment of a patient with shockwaves, a control and evaluation unit for evaluating an input signal supplied directly thereto that is correlated with a blood pressure value of the patient determined during the treatment, and controls the shockwave source dependent on the input signal.
Abstract:
A urological x-ray workstation has an x-ray source and an x-ray receiver that are respectively supported on device retainers of a device carrier located at the longitudinal side of a patient positioning table such that they can be positioned opposite one another and independently of one another in various positions on an orbit proceeding around a common center in a working plane oriented perpendicular to the longitudinal axis.
Abstract:
A medicine for treatment of a carcinoma which can be supplied to the carcinoma via the circulatory system, contains two active components coupled to one another. The first active component is formed of at least one coupling molecule that specifically tethers to a target molecule formed by the cancer tissue. The second active component is formed of at least one signal molecule typical to inflammation, or of at least originating molecule encoding such a signal molecule.
Abstract:
A shockwave system for treatment of a patient has a detection unit for detection of an indicator correlated with the calmness of the patient, and a device that is operable dependent on the indicator that increases the calmness of the patient. In a method for operation of a shockwave system for treatment of a patient, an indicator correlated with the calmness of the patient is detected and a measure to increase the calmness of the patient is taken dependent on the indicator.
Abstract:
A shockwave system for treatment of a patient has a detection unit for detection of an indicator correlated with the calmness of the patient, and a device that is operable dependent on the indicator that increases the calmness of the patient. In a method for operation of a shockwave system for treatment of a patient, an indicator correlated with the calmness of the patient is detected and a measure to increase the calmness of the patient is taken dependent on the indicator.
Abstract:
In a method for x-ray imaging given a patient containing a subject to be represented during a shockwave treatment, an image data set containing the subject and a marker is generated at a first point in time; an x-ray image showing essentially only the subject (14) and the marker is acquired at a second point in time, the x-ray image is correctly spatially associated with the image data set using the marker, the x-ray image is displayed together with information extracted from the image data set during the shockwave treatment. An apparatus for x-ray imaging a patient containing a subject to be represented during a shockwave treatment has a memory for an image data set generated at a first point in time and containing the subject and a marker, an x-ray system for acquisition of an x-ray image showing essentially only the subject and the marker at a second point in time; an evaluation unit for spatially-accurate association of the x-ray image with the image data set using the marker and for extraction of information from the image data set, and a display unit for display of the x-ray image together with the information during the shockwave treatment.
Abstract:
In a system and method for x-ray brachytherapy, a probe is introduced into the body of a subject, the probe carrying an x-ray source that radiates x-rays into an exposure area outside of the probe within the body of the subject. A number of markers are located in or on the probe, that are detectable in an image generated by an imaging device. The markers are located in or on the probe in a known spatial relation to the exposure area, so that the position of the exposure area can be determined by identifying the markers in the displayed image.
Abstract:
A system includes at least one device that includes at least one device component. For a defined movement of the at least one device component, a movement axis and/or a movement direction may be selected by a selection element and may be identified by an activatable lighting element. The identified movement axis and/or the identified movement direction may be released by at least one actuation element, so that a desired movement of the at least one device component may be performed.
Abstract:
The invention relates to a method and to an apparatus for recognizing tumorous living cell tissue. It furthermore relates to a method and to an apparatus for recognizing tumorous cell tissue at collected living cell tissue samples. In the method, electromagnetic radiation is emitted with local definition onto cell tissue by a radiation source and, after deactivation of the radiation source, the decay behavior of the inherent fluorescence intensity of the cell tissue excited by the electromagnetic radiation is detected at the cell tissue in a time resolved and spectrally resolved manner at known sampling rate(s) for at least one wavelength using a detector. The difference autocorrelation function C(t) of the intensity decay behavior is determined using the determined measured intensity values, the fractal dimension DF for the respective irradiated cell tissue is calculated from this and the value of the fractal dimension DF is used for a classification with respect to a presence of a tumor in the respective irradiated cell tissue.