Abstract:
A canoe and platform combination assembly includes a platform that has a top side, a bottom side, a front edge, a rear edge, a first lateral edge and a second lateral edge. A plurality of arms is attached to the platform. The arms engage canoes positioned adjacent to the first and second lateral sides such that the canoes are orientated parallel to each other. A plurality of tethers is provided. Each of the arms has one of the tethers positioned thereon. Each of the tethers is positioned around one of a plurality of braces of the canoes.
Abstract:
A method of determining a measure of a tissue state (e.g., glycation end-product or disease state) in an individual. A portion of the tissue of the individual is illuminated with excitation light, then light emitted by the tissue due to fluorescence of a chemical with the tissue responsive to the excitation light is detected. The detected light can be combined with a model relating fluorescence with a measure of tissue state to determine a tissue state. The invention can comprise various light excitation and detection configurations. The invention also can comprise correction techniques that reduce determination errors due to detection of light other than that from fluorescence of a chemical in the tissue. Other biologic information can be used in combination with the fluorescence properties to aid in the determination of a measure of tissue state. The invention also comprises apparatuses suitable for carrying out the method.
Abstract:
Embodiments of the present invention provide an apparatus suitable for determining properties of in vivo tissue from spectral information collected from various tissue sites. An illumination system provides light at a plurality of broadband ranges, which are communicated to an optical probe. The optical probe can be a flexible probe in some embodiments, allowing ease of application. Light homogenizers and mode scramblers can be employed to improve the performance in some embodiments. The optical probe in some embodiments physically contacts the tissue, and in some embodiments does not physically contact the tissue. The optical probe receives light from the illumination system and transmits it to tissue, and receives light diffusely reflected in response to the broadband light, emitted from the in vivo tissue by fluorescence thereof in response to the broadband light, or a combination thereof. The optical probe can communicate the light to a spectrograph which produces a signal representative of the spectral properties of the light. An analysis system determines a property of the in vivo tissue from the spectral properties.
Abstract:
A method of determining a measure of a tissue state (e.g., glycation end-product or disease state) in an individual. A portion of the tissue of the individual is illuminated with excitation light, then light emitted by the tissue due to fluorescence of a chemical with the tissue responsive to the excitation light is detected. The detected light can be combined with a model relating fluorescence with a measure of tissue state to determine a tissue state. The invention can comprise single wavelength excitation light, scanning of excitation light (illuminating the tissue at a plurality of wavelengths), detection at a single wavelength, scanning of detection wavelengths (detecting emitted light at a plurality of wavelengths), and combinations thereof. The invention also can comprise correction techniques that reduce determination errors due to detection of light other than that from fluorescence of a chemical in the tissue. For example, the reflectance of the tissue can lead to errors if appropriate correction is not employed. The invention can also comprise a variety of models relating fluorescence to a measure of tissue state, including a variety of methods for generating such models. Other biologic information can be used in combination with the fluorescence properties to aid in the determination of a measure of tissue state. The invention also comprises apparatuses suitable for carrying out the method, including appropriate light sources, detectors, and models (for example, implemented on computers) used to relate detected fluorescence and a measure of tissue state.
Abstract:
The present invention provides methods and apparatuses for accurate noninvasive determination of tissue properties. Some embodiments of the present invention comprise an optical sampler having an illumination subsystem, adapted to communicate light having a first polarization to a tissue surface; a collection subsystem, adapted to collect light having a second polarization communicated from the tissue after interaction with the tissue; wherein the first polarization is different from the second polarization. The difference in the polarizations can discourage collection of light specularly reflected from the tissue surface, and can encourage preferential collection of light that has interacted with a desired depth of penetration or path length distribution in the tissue. The different polarizations can, as examples, be linear polarizations with an angle between, or elliptical polarizations of different handedness.
Abstract:
A method of determining a measure of a tissue state (e.g., glycation end-product or disease state) in an individual. A portion of the tissue of the individual is illuminated with excitation light, then light emitted by the tissue due to fluorescence of a chemical with the tissue responsive to the excitation light is detected. The detected light can be combined with a model relating fluorescence with a measure of tissue state to determine a tissue state. The invention can comprise single wavelength excitation light, scanning of excitation light (illuminating the tissue at a plurality of wavelengths), detection at a single wavelength, scanning of detection wavelengths (detecting emitted light at a plurality of wavelengths), and combinations thereof. The invention also can comprise correction techniques that reduce determination errors due to detection of light other than that from fluorescence of a chemical in the tissue. For example, the reflectance of the tissue can lead to errors if appropriate correction is not employed. The invention can also comprise a variety of models relating fluorescence to a measure of tissue state, including a variety of methods for generating such models. Other biologic information can be used in combination with the fluorescence properties to aid in the determination of a measure of tissue state. The invention also comprises apparatuses suitable for carrying out the method, including appropriate light sources, detectors, and models (for example, implemented on computers) used to relate detected fluorescence and a measure of tissue state.
Abstract:
A method for setting configuration parameters for at least one software system, comprises the steps of: a) receiving an identification of a set of configuration parameters for at least one software system to be optimized; b) selecting a random value from a predetermined range for each configuration parameter of interest; c) setting each configuration parameter to a corresponding random value selected; d) running an application using the values selected; e) gathering performance information relating to the software system while the application is running; f) repeating steps b) through e) for a selected number of times; and g) performing an analysis of the performance information gathered to determine optimal configuration parameters. The method can be performed by a programmable computer system running program instructions for carrying out the above method steps or by a specialized apparatus such as an ASIC.
Abstract:
Systems and methods for establishing and/or maintaining the prediction capability over time of a multivariate calibration model designed for quantitative optical spectroscopic measurement of attributes or analytes in bodily tissues, bodily fluids or other biological samples, which are particularly useful when the spectral absorbance of the attribute or analyte is small relative to the background. The present invention provides an optically similar reference sample to capture the characteristics of instrument and environmental variation and to reduce the effect of such variation on the measurement capability of the model. The optically similar reference is preferably stable over time and is designed such that its optical properties are sufficiently matched to the sample of interest that instrument and environmental variations are captured in the same manner in both the test sample of interest and the optically similar reference sample. The optically similar reference sample may include one or more physical components which are spectroscopically measured in a manner which closely mimics the spectroscopic measurement of the test sample of interest. Spectral similarity may also be achieved by using alternative components with spectral characteristics similar to the components contained in the test sample of interest.
Abstract:
A handheld dual voltage circuit tester, method and electronic circuit that quickly allows a technician to determine whether an automotive electrical system runs on a 12-14 volt circuit or 36-42 volt circuit. The tester may be used for automobiles having a single voltage electrical system, or automobiles with distinct electrical systems operating on one of a 12-14 volts circuit or a 36-42 volt circuit. The tester includes a screwdriver-type elongated handle and probe tip. The tester also includes electronic circuitry disposed within its handle, heat shrink tubing, a conductive spring assembly, a strain relief, a retractable coil cord, a ground clip and insulation that encloses the ground clip. The tester also includes electronic circuitry that emits light of a first color when a 12-14 volt circuit is sensed, and light of a second color when a 36-42 volt circuit is sensed.
Abstract:
An apparatus and method for non-invasive measurement of glucose in human tissue by quantitative infrared spectroscopy to clinically relevant levels of precision and accuracy. The system includes six subsystems optimized to contend with the complexities of the tissue spectrum, high signal-to-noise ratio and photometric accuracy requirements, tissue sampling errors, calibration maintenance problems, and calibration transfer problems. The six subsystems include an illumination subsystem, a tissue sampling subsystem, a calibration maintenance subsystem, an FTIR spectrometer subsystem, a data acquisition subsystem, and a computing subsystem.