Abstract:
Catalyst compositions including a zeolite having a molar ratio of silicon to aluminum of about 10.0 to about 300.0; a Group 10-12 element and combinations thereof; a Group 15 element and combinations thereof; and optionally, a binder, wherein the catalyst composition has a molar ratio of Group 15 element to Group 10-12 element of about 0.01 to about 10.0 are disclosed. Methods of converting organic compounds to aromatics using such catalyst compositions are also disclosed.
Abstract:
In a process for the catalytic conversion of organic oxygenates to hydrocarbons, a feed comprising at least one organic oxygenate is contacted with a zeolite catalyst under conditions effective to produce a hydrocarbon product comprising aromatics, olefins and paraffins. At least a fraction of the hydrocarbon product containing C4+ hydrocarbons, including at least part of the olefins, is then contacted with hydrogen in the presence of a hydrogenation catalyst under conditions effective to saturate at least part of the olefins in the C4+-containing fraction and produce a hydrogenated effluent containing less than 1 wt % olefins. The hydrogenated effluent is useful as a diluent for heavy crude oils.
Abstract:
Apparatuses and processes for converting an oxygenate feedstock, such as methanol and dimethyl ether, in a fluidized bed containing a catalyst to hydrocarbons, such as gasoline boiling components, olefins and aromatics are provided herein.
Abstract:
An integrated process for producing naphtha fuel, diesel fuel and/or lubricant base oils from feedstocks under sour conditions is provided. The ability to process feedstocks under higher sulfur and/or nitrogen conditions allows for reduced cost processing and increases the flexibility in selecting a suitable feedstock. The sour feed can be delivered to a catalytic dewaxing step without any separation of sulfur and nitrogen contaminants. The integrated process includes an initial dewaxing of a feed under sour conditions, optional hydrocracking of the dewaxed feed, and a separation to form a first diesel product and a bottoms fraction. The bottoms fraction is then exposed to additional hydrocracking and dewaxing to form a second diesel product and optionally a lubricant base oil product. Alternatively, a feedstock can be hydrotreated, fractionated, dewaxed, and then hydrocracked to form a diesel fuel and a dewaxed, hydrocracked bottoms fraction that is optionally suitable for use as a lubricant base oil.
Abstract:
An integrated process for producing naphtha fuel, diesel fuel and/or lubricant base oils from feedstocks under sour conditions is provided. The ability to process feedstocks under higher sulfur and/or nitrogen conditions allows for reduced cost processing and increases the flexibility in selecting a suitable feedstock. The sour feed can be delivered to a catalytic dewaxing step without any separation of sulfur and nitrogen contaminants. The integrated process includes an initial dewaxing of a feed under sour conditions, optional hydrocracking of the dewaxed feed, and a separation to form a first diesel product and a bottoms fraction. The bottoms fraction is then exposed to additional hydrocracking and dewaxing to form a second diesel product and optionally a lubricant base oil product. Alternatively, a feedstock can be hydrotreated, fractionated, dewaxed, and then hydrocracked to form a diesel fuel and a dewaxed, hydrocracked bottoms fraction that is optionally suitable for use as a lubricant base oil.
Abstract:
A catalyst composition comprises a self-bound zeolite and a Group 12 transition metal selected from the group consisting of Zn, Cd, or a combination thereof, the zeolite having a silicon to aluminum ratio of at least about 10, the catalyst composition having a micropore surface area of at least about 340 m2/g, a molar ratio of Group 12 transition metal to aluminum of about 0.1 to about 1.3, and at least one of: (a) a mesoporosity of greater than about 20 m2/g; (b) a diffusivity for 2,2-dimethylbutane of greater than about 1×10−2 sec−1 when measured at a temperature of about 120° C. and a 2,2-dimethylbutane pressure of about 60 torr (about 8 kPa).
Abstract:
Various systems and methods can provide high availability of an application executing in a highly-available virtual machine environment. One method involves receiving information indicating a state of an application executing in a virtual machine from a monitoring agent executing in the virtual machine. In response to receiving the information, the method involves determining whether the virtual machine should be restarted. Based upon that determination, the method then determines whether the monitoring agent should send a heartbeat message to a virtualization controller prior to expiration of a timeout interval. The virtualization controller is configured to restart the virtual machine if the virtual machine does not send the heartbeat message prior to expiration of the timeout interval.
Abstract:
Embodiments of a wireless transceiver are provided. Embodiments can be used in multiple-input-multiple-output (MIMO) wireless transceivers. In an embodiment, radio control signal bundles are provided as direct parallel interconnects between digital signal processing modules and the radio module of the wireless transceiver to enable a precise low-latency control of radio functions. In another embodiment, a separate physical line is provided to control each radio setting of the radio module, thereby enabling simultaneous real-time control of any number of radio settings. In a further embodiment, the various digital and analog components of the wireless transceiver are integrated within a single chip of the same process technology.
Abstract:
An integrated process for producing naphtha fuel, diesel fuel and/or lubricant base oils from feedstocks under sour conditions is provided. The ability to process feedstocks under higher sulfur and/or nitrogen conditions allows for reduced cost processing and increases the flexibility in selecting a suitable feedstock. The sour feed can be delivered to a catalytic dewaxing step without any separation of sulfur and nitrogen contaminants, or with only a high pressure separation so that the dewaxing still occurs under sour conditions. Various combinations of hydrotreating, catalytic dewaxing, hydrocracking, and hydrofinishing can be used to produce fuel products and lubricant base oil products.
Abstract:
An integrated process for producing naphtha fuel, diesel fuel and/or lubricant base oils from feedstocks under sour conditions is provided. The ability to process feedstocks under higher sulfur and/or nitrogen conditions allows for reduced cost processing and increases the flexibility in selecting a suitable feedstock. The sour feed can be delivered to a catalytic dewaxing step without any separation of sulfur and nitrogen contaminants. The integrated process includes an initial dewaxing of a feed under sour conditions, optional hydrocracking of the dewaxed feed, and a separation to form a first diesel product and a bottoms fraction. The bottoms fraction is then exposed to additional hydrocracking and dewaxing to form a second diesel product and optionally a lubricant base oil product. Alternatively, a feedstock can be hydrotreated, fractionated, dewaxed, and then hydrocracked to form a diesel fuel and a dewaxed, hydrocracked bottoms fraction that is optionally suitable for use as a lubricant base oil.