Abstract:
A method is provided for abruptly stopping a vibration motor providing tactile feedback (406) to the user of a portable communication device (100). The method comprises providing a drive waveform (401) including an attack signal (402), and a stop signal (411) out of phase with the attack signal (402), to one of the vibration motor (235) or the multi-function transducer (130) to quickly stop the vibration. The drive waveform may include an optional sustain signal (407) subsequent to the attack signal (402) and prior to the stop signal (411). A file stored in memory (212) is accessed to provide the drive waveform (401).
Abstract:
Provided are methods and systems for improving quality of speech communications. The method may be for improving quality of speech communications in a system having a speech encoder configured to encode a first audio signal using a first set of encoding parameters associated with a first noise suppressor. A method may involve receiving a second audio signal at a second noise suppressor which provides much higher quality noise suppression than the first noise suppressor. The second audio signal may be generated by a single microphone or a combination of multiple microphones. The second noise suppressor may suppress the noise in the second audio signal to generate a processed signal which may be sent to a speech encoder. A second set of encoding parameters may be provided by the second noise suppressor for use by the speech encoder when encoding the processed signal into corresponding data.
Abstract:
A portable electronic device (100) includes a vibrating transducer having a resilient support and a first mass supported by the first resilient support forming a mechanical resonator, and an electrical circuit coupled to the first vibrating transducer to apply a drive signal. A plurality of tactile vibration transducers (130, 140) can work in unison to produce strong tactile stimulus (216, 228, 230).
Abstract:
Provided are methods and systems for improving quality of speech communications. The method may be for improving quality of speech communications in a system having a speech encoder configured to encode a first audio signal using a first set of encoding parameters associated with a first noise suppressor. A method may involve receiving a second audio signal at a second noise suppressor which provides much higher quality noise suppression than the first noise suppressor. The second audio signal may be generated by a single microphone or a combination of multiple microphones. The second noise suppressor may suppress the noise in the second audio signal to generate a processed signal which may be sent to a speech encoder. A second set of encoding parameters may be provided by the second noise suppressor for use by the speech encoder when encoding the processed signal into corresponding data.
Abstract:
Provided are methods and systems for enhancing the quality of voice communications. The method and corresponding system may involve classifying an audio signal into speech, and speech and noise and creating speech-noise classification data. The method may further involve sharing the speech-noise classification data with a speech encoder via a shared memory or by a Least Significant Bit (LSB) of a Pulse Code Modulation (PCM) stream. The method and corresponding system may also involve sharing acoustic cues with the speech encoder to improve the speech noise classification and, in certain embodiments, sharing scaling transition factors with the speech encoder to enable the speech encoder to gradually change data rate in the transitions between the encoding modes.
Abstract:
A mobile station (100) that includes a processor (212) that selectively disables at least one station component to reduce electromagnetic noise generated by the station in the frequency range below 20 kHz when the mobile station is operated in the hearing aid compatible mode. The component can be, for example, a display (204), a light (206) or a wireless interface (208). The processor also can optimize characteristics of audio signals transmitted from the mobile station to the hearing aid for reproduction by the hearing aid. For instance, the processor can selectively adjust filter parameters (216) and/or a signal gain (218) applied to audio signals. A user interface (220) having a soft-key can be provided to cycle through various HAC options.
Abstract:
Provided are methods and systems for enhancing the quality of voice communications. The method and corresponding system may involve classifying an audio signal into speech, and speech and noise and creating speech-noise classification data. The method may further involve sharing the speech-noise classification data with a speech encoder via a shared memory or by a Least Significant Bit (LSB) of a Pulse Code Modulation (PCM) stream. The method and corresponding system may also involve sharing acoustic cues with the speech encoder to improve the speech noise classification and, in certain embodiments, sharing scaling transition factors with the speech encoder to enable the speech encoder gradually change data rate in the transitions between the encoding modes.