Abstract:
A method of driving a display device includes analyzing input data of the display device to confirm whether there is a predetermined image pattern in an image corresponding to the input data, where a common voltage is distorted to an extent that a clock signal for a gate driver of the display device is distorted when the display device displays the image including the predetermined image pattern, and changing a slew rate of an output buffer of a data driver of the display device based on a result of the analyzing the input data.
Abstract:
Disclosed are an apparatus and method for converting video contents, each of which converts 2D contents into 3D contents. The method includes: determining an object to be extracted from a plurality of frames which contain 2D contents; determining a respective possession degree of information about the object to be extracted, with regard to each of the plurality of frames; selecting at least one key frame from among the plurality of frames in accordance with the determined possession degrees of information about the object to be extracted; extracting an object with regard to the selected key frame; assigning depth for conversion into 3D contents to the object to be extracted; and performing tracking upon all but the key frame from among the plurality of frames. Accordingly, the 2D-3D conversion can be performed with high accuracy and reliability.
Abstract:
Disclosed are an apparatus and method for converting 2D video contents into 3D video contents. The method includes: displaying a first work user interface (UI) relating to at least one item for converting 2D contents into 3D contents; by a first worker, determining a working direction relating to performing a conversion upon the at least one item by using the first work UI; displaying a second work UI showing the working direction determined by the first worker; and by a second worker, executing the working direction upon the at least one item by the second work UI. Accordingly, when a plurality of workers performs one or more 2D-3D conversions, work efficiency is improved, and good communication between workers is enabled.
Abstract:
An acousto-optic device includes an acousto-optic medium having a multi-layer nanostructure; and a sonic wave generator configured to apply sonic waves to the acousto-optic medium having the multi-layer nanostructure. The acousto-optic medium having the multi-layer nanostructure includes a second layer formed of at least two materials that have different dielectric constants and alternate with each other; and a first layer disposed on a first surface of the second layer and formed of a first material, and/or a third layer disposed on a second surface of the second layer and formed of a fourth material.
Abstract:
An apparatus and method for processing an image are provided. The image processing apparatus uses a two-dimensional (2D) video signal and depth information corresponding to the 2D video signal to generate a three-dimensional (3D) video signal includes: an image receiver which receives a 2D video signal containing a background and an object; and an image processor which adjusts a transition area corresponding to a boundary between the object and the background in the depth information, and renders a 3D image from the 2D video signal through the adjusted transition area.
Abstract:
A memory device includes a lower electrode formed on a substrate, and an information storage unit formed on the lower electrode. The information storage unit includes a plurality of information storage layers spaced apart from one another. Each of the plurality of information storage layers is an information unit. A method of manufacturing a memory device uses a porous film to form the plurality of information storage layers.
Abstract:
There are provided an optical pointing module having a lighting function and an electric device that can be used at night or dark place. An optical pointing module having a lighting function according to an aspect of the invention may include: a laser light source mounted on a printed circuit board; an outer housing through which laser light, emitted from the laser light source, passes, the outer housing having an outside part formed of a transparent material; and a lighting unit mounted inside the outer housing and supplying light to the outside part.
Abstract:
Disclosed are a motion estimating method for an image and an image processing apparatus. A motion estimating method of an image, the method including: calculating a candidate motion vector by using one of a forward motion estimation and a backward motion estimation from a reference block extracted from one of first and second images that are input consecutively, and a search area extracted from the other one of the first and second images; calculating a pseudo motion vector corresponding to the other one of the forward motion estimation and the backward motion estimation by using the candidate motion vector; and interpolating the first and second images by using at least one of the candidate motion vector and the pseudo motion vector.
Abstract:
A noise determining apparatus is provided. The noise determining apparatus includes a video determiner which determines type of video according to a pre-set criterion, a noise level determiner which determines a level of noise with reference to output from the video determiner, and a noise determiner which determines presence or absence of noise with reference to output from the noise level determiner. Accordingly, incorrect discrimination between a texture area of low level which is similar to noise and noise having a great level difference with respect to neighboring pixels is reduced.
Abstract:
A method and apparatus for converting two-dimensional (2D) contents into three-dimensional (3D) contents is disclosed. The method including: displaying a frame, the frame containing an object which will be extracted from among plural frames contained in the 2D contents; designating a boundary region of an object to be extracted on the displayed frame, in accordance with a user command through a user interface (UI) for collectively designating a region; generating a trimap based on the designated boundary region including inner and outer regions of the object to be extracted, and extracting the object based on the generated trimap. With this, a user can more conveniently and efficiently convert 2D contents into 3D contents.