Abstract:
A transistor having minimized parasitics is provided including an emitter having a recessed extrinsic emitter portion atop an intrinsic emitter portion; a base including an intrinsic base portion in electrical contact with the intrinsic emitter portion and an extrinsic base portion in electrical contact with the intrinsic base portion and electrically isolated from the recessed extrinsic emitter portion by a set of emitter/base spacers; and a collector in electrical contact with the intrinsic base portion. The transistor may further include extrinsic base having top surfaces entirely silicided to the emitter/base spacer. Additionally, the transistor may include a base window opening within the transistor's active area. Methods of forming the above-described transistor are also provided.
Abstract:
A method is disclosed of fabricating a MIMCAP (a capacitor (CAP) formed by successive layers of metal, insulator, metal (MIM)) and a thin film resistor at the same level. A method is also disclosed of fabricating a MIMCAP and a thin film resistor at the same level, and a novel integration scheme for BEOL (back-end-of-line processing) thin film resistors which positions them closer to FEOL (front-end-of-line processing) devices.
Abstract:
New device and method are described for accurate etching and removal of thin layer by controlling the surface residence time, thickness and composition of reactant containing film. Etching of silicon dioxide at low pressure using a quartz crystal microbalance is illustrated. Usefulness of the invention in the manufacture of microelectronic devices is shown.
Abstract:
A transistor having minimized parasitics is provided including an emitter having a recessed extrinsic emitter portion atop an intrinsic emitter portion; a base including an intrinsic base portion in electrical contact with the intrinsic emitter portion and an extrinsic base portion in electrical contact with the intrinsic base portion and electrically isolated from the recessed extrinsic emitter portion by a set of emitter/base spacers; and a collector in electrical contact with the intrinsic base portion. The transistor may further include extrinsic base having top surfaces entirely silicided to the emitter/base spacer. Additionally, the transistor may include a base window opening within the transistor's active area. Methods of forming the above-described transistor are also provided.
Abstract:
The invention is directed to a structure and method of forming a structure having a sealed gate oxide layer. The structure includes a gate oxide layer formed on a substrate and a gate formed on the gate oxide layer. The structure further includes a material abutting walls of the gate and formed within an undercut underneath the gate to protect regions of the gate oxide layer exposed by the undercut. Source and drain regions are isolated from the gate by the material.
Abstract:
A transistor having minimized parasitics is provided including an emitter having a recessed extrinsic emitter portion atop an intrinsic emitter portion; a base including an intrinsic base portion in electrical contact with the intrinsic emitter portion and an extrinsic base portion in electrical contact with the intrinsic base portion and electrically isolated from the recessed extrinsic emitter portion by a set of emitter/base spacers; and a collector in electrical contact with the intrinsic base portion. The transistor may further include extrinsic base having top surfaces entirely silicided to the emitter/base spacer. Additionally, the transistor may include a base window opening within the transistor's active area. Methods of forming the above-described transistor are also provided.
Abstract:
A transistor having minimized parasitics is provided including an emitter having a recessed extrinsic emitter portion atop an intrinsic emitter portion; a base including an intrinsic base portion in electrical contact with the intrinsic emitter portion and an extrinsic base portion in electrical contact with the intrinsic base portion and electrically isolated from the recessed extrinsic emitter portion by a set of emitter/base spacers; and a collector in electrical contact with the intrinsic base portion. The transistor may further include extrinsic base having top surfaces entirely silicided to the emitter/base spacer. Additionally, the transistor may include a base window opening within the transistor's active area. Methods of forming the above-described transistor are also provided.
Abstract:
A transistor having minimized parasitics is provided including an emitter having a recessed extrinsic emitter portion atop an intrinsic emitter portion; a base including an intrinsic base portion in electrical contact with the intrinsic emitter portion and an extrinsic base portion in electrical contact with the intrinsic base portion and electrically isolated from the recessed extrinsic emitter portion by a set of emitter/base spacers; and a collector in electrical contact with the intrinsic base portion. The transistor may further include extrinsic base having top surfaces entirely silicided to the emitter/base spacer. Additionally, the transistor may include a base window opening within the transistor's active area. Methods of forming the above-described transistor are also provided.
Abstract:
In supersonic molecular beam etching, the reactivity of the etchant gas and substrate surface is improved by creating etchant gas molecules with high internal energies through chemical reactions of precursor molecules, forming clusters of etchant gas molecules in a reaction chamber, expanding the etchant gas molecules and clusters of etchant gas molecules through a nozzle into a vacuum, and directing the molecules and clusters of molecules onto a substrate. Translational energy of the molecules and clusters of molecules can be improved by seeding with inert gas molecules. The process provides improved controllability, surface purity, etch selectivity and anisotropy. Etchant molecules may also be expanded directly (without reaction in a chamber) to produce clusters whose translational energy can be increased through expansion with a seeding gas.
Abstract:
A polyemitter structure having a thin interfacial layer deposited between the polysilicon emitter contact and the crystalline silicon emitter, as opposed to a regrown SiO.sub.x layer, has improved reproducibility and performance characteristics. A n-doped hydrogenated microcrystalline silicon film can be used as the deposited interfacial film between a crystalline silicon emitter and a polycrystalline silicon contact.