Abstract:
A wheel suspension for a motor vehicle has a transverse control arm that can be attached to a vehicle body by way of bearings and a spring-elastic torsion bar assembly, and can be rotated about a longitudinal axis. The torsion bar assembly has a body spring that can be attached to the vehicle body with one end, and a transverse control arm spring that is attached to the transverse control arm with one end. The body spring and the transverse control arm spring are coupled with one another at their free ends. The transverse control arm spring and the body spring are coupled with one another by way of a setting element or a releasable connection, whereby the setting element or the releasable connection, respectively, allows rotation of the ends assigned to one another, for setting purposes.
Abstract:
A vehicle chassis with a spring bracket supporting a helical spring braced between two spring plates. a region of a piston and a shock absorber tube is disposed within the helical spring. At least one of the spring plates is axially adjustable by a drive unit having a circular electric motor with a stator and a rotor, and a transmission having a threaded spindle and a threaded screw.
Abstract:
A wheel suspension for a motor vehicle has a transverse control arm that can be attached to a vehicle body by way of bearings and a spring-elastic torsion bar assembly, and can be rotated about a longitudinal axis. The torsion bar assembly has a body spring that can be attached to the vehicle body with one end, and a transverse control arm spring that is attached to the transverse control arm with one end. The body spring and the transverse control arm spring are coupled with one another at their free ends. The transverse control arm spring and the body spring are coupled with one another by way of a setting element or a releasable connection, whereby the setting element or the releasable connection, respectively, allows rotation of the ends assigned to one another, for setting purposes.
Abstract:
A device for controlling a platform door (14) located at the guideway (1) of a vehicle (2) is described. According to the invention, the device comprises, a sensor unit (17), which is mounted at the guideway (1) and which serves to detect a preselected state of the vehicle (2). An evaluating device (18) connected to the sensor unit (17) permits an opening of the platform door (14) only when the vehicle (2) is in the preselected state.
Abstract:
In a method for measuring a distance between a conducting reaction track and a functional surface moving relative to the reaction track a sensor with two signal transmitters is provided on the functional surface. An alternating field is generated in the sensor. The alternating field changes as a function of the distance between the conducting reaction track and the functional surface. Each of the two signal transmitters detects the changes of the alternating field as distance information. Each signal transmitter produces decoupled distance information values. These decoupled distance information values are processed in separate distance measuring channels to provide processed signals. The processed signals are constantly fed to and compared in a comparator. A distance information signal is emitted only when the processed signals of the separate distance measuring channels are identical within a predetermined tolerance range.
Abstract:
A wheel suspension for a motor vehicle has a transverse control arm that can be attached to a vehicle body by way of bearings and can be rotated about a longitudinal axis, and a body spring configured as a torsion bar spring for absorbing rotational movements of the transverse control arm about the longitudinal axis. The body spring is disposed on the transverse control arm so as to rotate with it, with a first end. An electromechanical actuator for changing the angle of rotation of the body spring is disposed at a second end of the body spring. The wheel suspension has a damping element. The second end of the body spring is connected with a stress relief spring that is configured as a torsion bar spring, disposed coaxially with the body spring, and can be attached to the vehicle body.
Abstract:
A device for automatically controlling a track-bound vehicle, particularly a magnetic levitation vehicle is described. The device comprises a drive and brake system (4), an additional brake (9), a stationary mounted travel computer (5) and data carriers (10) arranged along the guideway for the supply of status signals in the form of location, speed or travel direction signals. In accordance with the invention the device also comprises means (12, 29) which are arranged for safely stopping and/or starting the vehicle at or from preselected target stopping points (15) within the stopping zones (A) and which are so configured that an immediate decoupling of the vehicle from the drive and brake system (4) is effected when an impermissible travel status within the area of a stopping zone (A) is reached (FIG. 1).
Abstract:
A device for generating safe status signals of a vehicle (9) that is movable along a given guideway includes data transmitters disposed along said guideway and provided with data (28a, 28b), data acquisition units (21) mounted on the vehicle and used for scanning the data transmitters and for supplying data signals, and an evaluation device (24) connected to said data acquisition units (21) evaluating the data signals. At least two of the data acquisition units (21) are provided which are connected to the evaluation device (24), and the evaluation device (24) has an output (25) for delivering safe status signals when and as long as at least two data acquisition units (21) supply matching data.
Abstract:
A magnet arrangement (10) for a magnetic levitation vehicle (1) is described. The magnet arrangement comprises at least one magnetic pole (11) consisting of a core (14) and a winding (12) applied to the core, a control circuit connected to the winding (12) and a power supply unit for supplying at least the electrical energy required for the control circuit. According to the invention, the magnet arrangement (10) is designed as an autonomous modular unit integrating within itself the magnetic pole (11), the control circuit and the power supply unit (FIG. 5).
Abstract:
The invention relates to a spring carrier for the chassis of a motor vehicle. Said carrier is used to support a coil spring (1) which is braced between two spring plates (2, 3). At least one of said spring plates (2) can be axially adjusted by means of a drive unit comprising a gearbox and an electric motor. Preferably, at least one part of the piston rod (6) and/or the shock-absorber tube (5) of a shock-absorber or a suspension strut is arranged inside the coil spring (1). The aim of the invention is to develop one such spring carrier in such a way that the distance between the upper spring end and the vehicle body can be kept small in a cost-effective manner. To this end, the electric motor is embodied in the form of a ring motor having an external stator (15) and an internal rotor (16) which comprises a displacement nut on its inner side, said displacement nut axially displacing a spring plate carrier (21) connected to the spring plate (2) and externally embodied as a threaded spindle.