Abstract:
A process for making modified polybutylene terephthalate random copolymers from a polyethylene terephthalate component includes reacting an oligomeric diol component selected from the group consisting of bis(hydroxybutyl) terephthalate, bis(hydroxybutyl)isophthalate, hydroxybutyl-hydroxyethyl terephthalate, and combinations thereof to a reactor; (i) a polyethylene terephthalate component selected from the group consisting of polyethylene terephthalate and polyethylene terephthalate copolymers with (ii) a diol component selected from the group consisting of 1,4-butanediol, ethylene glycol, propylene glycol, and combinations thereof, in the reactor under conditions sufficient to depolymerize the polyethylene terephthalate component into a first molten mixture; combining the first molten mixture is combined with 1,4-butanediol under conditions to form a second molten mixture; and placing the second molten mixture under conditions sufficient to produce the modified polybutylene terephthalate random copolymers. Also described are compositions and articles made from the process.
Abstract:
A process for making modified polybutylene terephthalate random copolymers from a polyethylene terephthalate component includes reacting an oligomeric diol component selected from the group consisting of bis(hydroxybutyl)terephthalate, bis(hydroxybutyl)isophthalate, hydroxybutyl-hydroxyethyl terephthalate, and combinations thereof to a reactor; (i) a polyethylene terephthalate component selected from the group consisting of polyethylene terephthalate and polyethylene terephthalate copolymers with (ii) a diol component selected from the group consisting of 1,4-butanediol, ethylene glycol, propylene glycol, and combinations thereof, in the reactor under conditions sufficient to depolymerize the polyethylene terephthalate component into a first molten mixture; combining the first molten mixture is combined with 1,4-butanediol under conditions to form a second molten mixture; and placing the second molten mixture under conditions sufficient to produce the modified polybutylene terephthalate random copolymers. Also described are compositions and articles made from the process.
Abstract:
A residue buffer, for temporary storage of portions of transmissions from a CPU to a graphics processor. Graphics commands are transmitted, in transmission units of uniform size, from a processor unit to an address generator, which processes the commands. The portion of the transmission unit not immediately usable by the graphics processor is stored in the residue buffer. The disclosure further describes a computer graphics system, having a graphics processor capable of reading from or writing to main memory, including virtual memory, without any action by the CPU; having a duplicate cache tag store accessible by the graphics system without generating traffic on the system bus; having a FIFO command buffer in main memory for temporary storage of graphics commands; having a "short circuit" feature for routing graphics commands to the command processor in the minimum number of steps; having a cursor control system capable of storing cursor pattern information in, and retrieving cursor pattern information from, main memory; having a cursor bus that is reconfigurable to carry information other than cursor information; and having a frame buffer module that contains no timing or cursor control circuitry.
Abstract:
A high flow polyester composition is disclosed, which comprises at least one polyester and at least one flow enhancing ingredient of structure, I, where, R1=NH2 or CH2OH; R2=CH3, CH3CH2 or CH2OH or any of C1-C20 alkyl group which may have one or more hydroxy group substituent, C3-C20 cycloalkyl group, C6-C20 aryl group, C1-C20 alkoxy group which may have one or more hydroxy group substituent or C6-C20 aryloxy group. A good balance of flowability and mechanical properties is obtained by controlling the amount of the said flow-enhancing ingredient. The composition further comprises reinforcing fillers, impact modifiers, a property-enhancing thermoplastic such as polycarbonate and flame retardant chemicals. The compositions are suitable for making automotive, electric and electronic parts.
Abstract:
A high flow polyester composition is disclosed, which comprises at least one polyester and at least one flow enhancing ingredient of structure, I, where, R1═NH2 or CH2OH; R2═CH3, CH3CH2 or CH2OH or any of C1-C20 alkyl group which may have one or more hydroxy group substituent, C3-C20 cycloalkyl group, C6-C20 aryl group, C1-C20 alkoxy group which may have one or more hydroxy group substituent or C6-C20 aryloxy group. A good balance of flowability and mechanical properties is obtained by controlling the amount of the said flow-enhancing ingredient. The composition further comprises reinforcing fillers, impact modifiers, a property-enhancing thermoplastic such as polycarbonate and flame retardant chemicals. The compositions are suitable for making automotive, electric and electronic parts.