Abstract:
An apparatus according to one embodiment includes a near field transducer comprising a conductive metal film; and an optical waveguide for illumination of the near field transducer, a light guiding core layer of the optical waveguide being spaced from the near field transducer by less than about 100 nanometers and greater than 0 nanometers, wherein a longitudinal axis of the optical waveguide is substantially perpendicular to an air bearing surface.
Abstract:
A thermally-assisted recording (TAR) slider has an integrated TAR head and an integrated external-cavity VCSEL. The TAR head is integrated with the slider at the trailing end and includes an optical waveguide having a grating coupler oriented in a plane generally parallel to the slider trailing end, and a near-field transducer (NFT) at the slider air-bearing surface (ABS) and coupled to the waveguide. The external cavity is an angled structure and has an input surface for receipt of laser radiation output from the VCSEL, an output surface near the slider trailing end, a partially reflecting third mirror near the output surface, and at least one reflective surface between the input surface and the third mirror for turning the laser radiation and reflecting it between the VCSEL and the third mirror. The laser radiation is output from the external cavity's output surface, through the trailing end of the slider and to the grating coupler.
Abstract:
According to one embodiment, an apparatus includes a near field transducer comprising a conductive metal film having a main body and a ridge extending from the main body and an optical waveguide for illumination of the near field transducer, a light guiding core layer of the optical waveguide being spaced from the near field transducer by less than about 100 nanometers and greater than 0 nanometers. In another embodiment, a method includes forming a near field transducer structure and removing a portion of the near field transducer structure. The method also includes forming a cladding layer adjacent a remaining portion of the near field transducer structure, wherein a portion of the cladding layer extends along the remaining portion of the near field transducer structure and forming a core layer above the cladding layer. Other apparatuses and methods are also included in the invention.
Abstract:
A horizontal cavity, surface emitting laser (HCSEL) with internal polarization rotation is used in thermally assisted recording in hard disk drives. The desired polarization of the laser is accomplished with two beam reflections off of facets within the diode. The facets are formed in a single ion beam etching step. This device can be used in a thermally assisted recording head to produce polarization incident on the disk aligned with the direction of the tracks on the disk.
Abstract:
The media heating device of the magnetic head includes an optical resonant cavity produces a high intensity near-field optical beam of subwavelength dimension adjacent to the write pole. A suitable resonant cavity may be a spherical cavity, disk shaped cavity, ring shaped cavity, racetrack shaped cavity, micropillar cavity, photonic crystal cavity and Fabry-Perot cavity. The cavity is fabricated as a planar thin film structure in layers that are generally parallel to the magnetic pole thin film layers of the magnetic head, such that the principal axis of the resonant cavity is parallel to the air bearing surface (ABS). Optical energy is coupled into the resonant cavity through a waveguide that is placed proximate the cavity, and optical energy is coupled out of the cavity through an aperture that is placed within the cavity. A preferred embodiment may include a nano-aperture disposed between the resonant cavity and the ABS.
Abstract:
An optical recording head including a media heating device to write and read data to a heat sensitive optical media disk. The media heating device includes an optical energy resonant cavity that produces a high intensity near-field optical spot of subwavelength dimension. Optical energy is coupled into the resonant cavity through a waveguide that is placed proximate the cavity, and optical energy is coupled out of the cavity through an aperture that is placed proximate an antinode or post within the cavity. In reading data from the optical media, a photodetector is placed at the end of the waveguide. Optical energy emitted from the end of the waveguide is influenced by the reflectivity of the media data bit, and is interpreted as the data bit signal.
Abstract:
An inspection system using laser light directed at an off-axis parabolic mirror which focuses the beam on the surface being inspected and also serves as the collector for scattered and specular light returned from the surface is described. Specular and scattered light returned from the surface onto the parabolic mirror is divided into appropriate fields and directed onto detectors. In the preferred embodiment a polarized laser is used in conjunction with a polarizing beam splitter and a quarter-wave plate to route the reflected beam to a detector while allowing the original beam to be directed through the same optics. The parabolic mirror and selected additional components may be commonly mounted on a translatable stage which is moved along a radius of the disk when the optical inspection is being performed. Other components of the system such as the laser can remain in a fixed position. The system of the invention can be used to inspect one or both planar surfaces of the disk by providing duplication of selected components appropriately oriented with respect to the second surface.
Abstract:
A laser, such as a horizontal cavity surface emitting laser, with internal polarization rotation may be used in thermally assisted recording in hard disk drives. The desired polarization of the laser may be accomplished with two beam reflections off of facets within the laser. The facets may be formed in a single ion beam etching step. The laser may be used on a thermally assisted recording head to produce a polarized beam that is aligned with a track direction of the disk.
Abstract:
A thermally-assisted recording (TAR) disk drive uses “shingled” recording and a rectangular waveguide as a “wide-area” heat source. The waveguide generates a generally elliptically-shaped optical spot that heats an area of the recording layer extending across multiple data tracks. The waveguide core has an aspect ratio (cross-track width to along-the track thickness) that achieves the desired size of the heated area while locating the peak optical intensity close to the trailing edge of the write pole tip where writing occurs. The large cross-track width of the waveguide core increases the volume of recording layer heated by the optical spot, which reduces the rate of cooling. This moves the peak temperature point of the heated area closer to the write pole tip and reduces the temperature drop between the peak temperature and the temperature at the trailing edge of the write pole tip where writing occurs.
Abstract:
A write head structure for perpendicular recording having a pole tip integrated into the metal film surrounding a C aperture near field light source is disclosed. The close proximity of the pole tip to the light source enables more precise location of data cells written into the magnetic media, through the use of dual gradient thermally assisted recording. In dual gradient recording, data is fixed by the effect of both a thermal gradient, which affects the coercivity of the magnetic media, combined with a magnetic field gradient imposed by the pole tip.