Abstract:
A disposable blood analysis cartridge for analyzing a blood sample including an optical light scattering measurement channel is described. In use, processed sample may be introduced into a sheath fluid channel at an angle, α, of approximately 90 degrees, relative to the direction of flow of the sheath fluid. In addition, delivering the sample from the side into the sheath fluid may facilitate better positioning of the core within the hydrodynamic focusing channel for measurement.
Abstract:
An interposer includes a first surface on a first side of the interposer and a second surface on a second side of the interposer, wherein the first and the second sides are opposite sides. A first probe pad is disposed at the first surface. An electrical connector is disposed at the first surface, wherein the electrical connector is configured to be used for bonding. A through-via is disposed in the interposer. Front-side connections are disposed on the first side of the interposer, wherein the front-side connections electrically couple the through-via to the probe pad.
Abstract:
An under-bump metallization (UBM) structure for a semiconductor device is provided. The UBM structure has a center portion and extensions extending out from the center portion. The extensions may have any suitable shape, including a quadrangle, a triangle, a circle, a fan, a fan with extensions, or a modified quadrangle having a curved surface. Adjacent UBM structures may have the respective extensions aligned or rotated relative to each other. Flux may be applied to a portion of the extensions to allow an overlying conductive bump to adhere to a part of the extensions.
Abstract:
An under-bump metallization (UBM) structure for a semiconductor device is provided. The UBM structure has a center portion and extensions extending out from the center portion. The extensions may have any suitable shape, including a quadrangle, a triangle, a circle, a fan, a fan with extensions, or a modified quadrangle having a curved surface. Adjacent UBM structures may have the respective extensions aligned or rotated relative to each other. Flux may be applied to a portion of the extensions to allow an overlying conductive bump to adhere to a part of the extensions.
Abstract:
The present invention relates to electrostatically actuated device components and methods of making the same. In an embodiment, the invention includes a method of making an electrostatically actuated device component including providing a multilayered structure comprising a first layer comprising a first polymer, a second layer comprising a conductive material, the second layer disposed over the first layer, a third layer comprising a dielectric material, the third layer disposed over the second layer, positioning the multilayered structure within an injection mold, and injecting a second polymer into the mold and bonding the first layer to the second polymer to produce an electrostatically actuated device component. In an embodiment, the invention includes a method of injection molding a stator component for an electrostatically actuated valve.
Abstract:
A valve structure having a top part, a flexible media conveyance, such as a tube, a diaphragm and a bottom part with a support for the tube. The top surface of the diaphragm and the bottom surface of the top part may have electrodes attached. When there is no electric potential applied across the electrodes, the diaphragm may rest on and close the passageway in the flexible tube for effectively preventing a fluid flow. When an electrical potential is applied to the electrodes, the diaphragm may be pulled up off from the tube thereby opening or partially opening the passageway in the tube for a media flow or pressure transfer. Partial opening may be for modulation purposes. There may be a tension mechanism attached to the diaphragm. A controller may apply an electrical potential to the electrodes for at least partially opening or closing the valve.
Abstract:
A device for sensing pressure using two flexible diaphragms in which an additional element is added to promote rolling contact of the diaphragm. One embodiment aligns the flexible diaphragms in a non-parallel alignment such that deflection of one flexible diaphragm will roll with respect to the other to provide increased linear capacitive response. In another embodiment a non-conductive spacing element is positioned between the diaphragms to permit rolling contact upon displacement of a diaphragms. These devices are capacitive pressure gauges. One additional embodiment includes a cantilever hinge and rigid polymer disc to convert one diaphragm into a linearly deflecting diaphragm.
Abstract:
A gas valve body with a first flow chamber and, a second flow chamber including and a main valve positioned in line and between the first flow chamber and the second flow chamber. The main valve can be opened by creating a pressure differential across the main valve. An electrostatically controlled pilot valve is provided for controlling the pressure differential across the main valve for “on-ff” operation. The electrostatically controlled pilot valve may also be operated to “modulate” the pressure differential across the main valve along a range of pressure differential values.
Abstract:
A valve structure having a top part, a flexible media conveyance, such as a tube, a diaphragm and a bottom part with a support for the tube. The top surface of the diaphragm and the bottom surface of the top part may have electrodes attached. When there is no electric potential applied across the electrodes, the diaphragm may rest on and close the passageway in the flexible tube for effectively preventing a fluid flow. When an electrical potential is applied to the electrodes, the diaphragm may be pulled up off from the tube thereby opening or partially opening the passageway in the tube for a media flow or pressure transfer. Partial opening may be for modulation purposes. There may be a tension mechanism attached to the diaphragm. A controller may apply an electrical potential to the electrodes for at least partially opening or closing the valve.
Abstract:
A process for making a laser structure. The process is for the fabrication of a laser device such a vertical cavity surface emitting laser (VCSEL). The structures made involve dielectric and spin-on material planarization over wide and narrow trenches, coplanar contacts, non-coplanar contacts, thick and thin pad dielectric, air bridges and wafer thinning.