Abstract:
Remediation for groundwater, soil, sediment bodies, bodies of water, tanks, pipes, and their surrounding areas are described. Remediation includes treating a site contaminated with toxic organic compounds by assessing for the presence or absence of suitable ozonophilic bacteria at the site and introducing ozone to the site. The ozonophilic bacteria are introduced to the site if the ozonophilic bacteria are not present or not present in sufficient quantities in the site. Ozone is introduced to the site in an amount sufficient to stimulate growth of the suitable ozonophilic bacteria. Other oxidants can also be used.
Abstract:
Apparatuses for removal of volatile organic compounds in a soil formation include a microporous diffuser for injecting air and gaseous ozone as bubbles into water in the soil formation. The gaseous ozone is present at concentrations to effect removal of volatile organic compounds by the gaseous ozone reacting with the volatile organic compound(s). Injection of air and gaseous ozone is controlled by a timer to allow separation of bubbles by size. In various embodiments, a plurality of microporous diffusers may be controlled by a single timer or each of the plurality of microporous diffusers may be controlled by one of a plurality of timers.
Abstract:
A microporous diffuser includes a first elongated member including at least one sidewall having a plurality of microscopic openings. The sidewall defines an interior hollow portion of the member. The diffuser has a second elongated member having a second sidewall having a plurality of microscopic openings, the second member being disposed through the hollow region of the first member. The diffuser includes an end cap to seal a first end of the microporous diffuser and an inlet cap disposed at a second end of microporous diffuser for receiving inlet fittings.
Abstract:
Apparatus and method for removal of contaminants from a formation are described. The apparatus and method introduces at a first location treatment materials at concentrations to effect removal of contaminants into a formation and withdraws fluid from a second location that is spaced from the first location feeding withdrawn fluid back to the first location.
Abstract:
A diffuser useful for sparging to remove contaminant in situ is described. The diffuser includes a first elongated member having a sidewall with a first portion of the length of the sidewall being microporous, and a second portion of the length of the sidewall having well screen sized openings with the first elongated member defining an interior hollow portion of the diffuser, a second elongated member having a second sidewall having a plurality of microscopic openings, said second member being disposed through the hollow region of said first member and a third elongated member having a third sidewall having a plurality of microscopic openings, said third member being disposed coaxial with the first and second members. An end cap is disposed to seal a first end of the third elongated member, and being in contact with the second elongated member forms a chamber. The diffuser has an inlet arrangement disposed at a second end of diffuser for supporting a first inlet fitting to coupled to an peripheral interior portion of the diffuser adjacent the first member, a second fitting to couple to the chamber, and a third fitting coupled to the third member.
Abstract:
A sparging system for in-situ groundwater remediation for removal of contamination including dissolved chlorinated hydrocarbons and dissolved hydrocarbon petroleum products including the use in injection wells of microfine bubble generators, matched to substrates of selected aquifer regions, for injection and distribution of said bubbles containing oxidizing gas through said aquifer and to selectively encapsulating gases including oxygen and ozone in duo-gas bubbles which, in the presence of co-reactant substrate material acting as a catalyst, are effective to encourage biodegradation of leachate plumes which contain biodegradable organics, or Criegee decomposition of leachate plumes containing dissolved chlorinated hydrocarbons.
Abstract:
A microporous diffuser includes a first elongated member including at least one sidewall having a plurality of microscopic openings. The sidewall defines an interior hollow portion of the member. The diffuser has a second elongated member having a second sidewall having a plurality of microscopic openings, the second member being disposed through the hollow region of the first member. The diffuser includes an end cap to seal a first end of the microporous diffuser and an inlet cap disposed at a second end of microporous diffuser for receiving inlet fittings.
Abstract:
A sparging system and process for in-situ removal of contaminants from soil and an associated subsurface groundwater aquifer of a site is disclosed. The sparge system is capable of extracting contaminant in the form of gas from groundwater in a gas/gas/water reaction. The system includes at least one microporous diffuser having a porosity matched to a soil porosity. The microdiffuser is in an injection well. Ozone or other oxidizing gas in the form of bubbles is injected into the site to extract volatile dissolved contaminants for in-situ decomposition. A pump and a pneumatic packer are disposed to alternate pumping and bubble injection into the well to maximize dispersal of bubbles within and outward from the well casing, and to provide uniform dispersion of the bubbles as they travel through the site formation.
Abstract:
In the apparatus disclosed herein, a continuously operative sample intake is traversed along the shoreline at a preselected subsurface level appropriate for picking up effluents emanating from on-shore septic systems. The conductivity and the fluorescence of the sampled water are measured continuously, the wavelength of the fluorescence measured being chosen to determine the presence of aromatic hydrocarbons and detergent whiteners which are present in distinctive proportions in recharged septic effluents. Signal processing means are incorporated for generating an output signal which varies as a function of the conjoint deviation of the two measurements from the values thereof which are representative of background water levels.
Abstract:
A method and apparatus for hydrocarbon recovery and/or treatment of frac water includes introducing a volume of water into a formation, recovering the introduced water, with the recovered introduced water further comprising suspended hydrocarbon product. The recovered liquid is treated to remove substantial amounts of the suspended hydrocarbon product, provide the treated recovered liquid with a ORP in a range of 150 mv to 1000 mv, and partially desalinated, and is either re-introduced as treated recovered liquid with the ORP into a formation to assist in recovery of additional hydrocarbon deposits in the formation, or is stored to reduce the ORP and then subsequently discharged into surface waters.