Abstract:
A light receiving element includes an InP substrate that is transparent to light having a wavelength of 3 to 12 μm, a buffer layer located in contact with the InP substrate, and a light-receiving layer having a multiple quantum well structure, the light-receiving layer having a cutoff wavelength of 3 μm or more and being lattice-matched with the buffer layer. In the light receiving element, the buffer layer is epitaxially grown on the InP substrate while the buffer layer and the InP substrate exceed a range of a normal lattice-matching condition, and the buffer layer is constituted by a GaSb layer.
Abstract:
The present invention provides an image pickup device used to capture an image of an object by receiving light in a near infrared region reflected from the object. The image pickup device includes semiconductor light-receiving elements each having a light-receiving layer with a band gap wavelength of 1.65 to 3.0 μm.
Abstract:
A photodetector and a method of manufacturing the photodetector are provided, in which variation in sensitivity is suppressed over the near-infrared region from the short wavelength side including 1.3 μm to the long wavelength side. The photodetector includes, on an InP substrate, an absorption layer of a type II multiple quantum well structure comprising a repeated structure of a GaAsSb layer and an InGaAs layer, and has sensitivity in the near-infrared region including wavelengths of 1.3 μm and 2.0 μm. The ratio of the sensitivity at the wavelength of 1.3 μm to the sensitivity at the wavelength of 2.0 μm is not smaller than 0.5 but not larger than 1.6.
Abstract:
An object of the present invention is to provide, for example, a photodiode that can have sufficiently high sensitivity in a near-infrared wavelength range of 1.5 μm to 1.8 μm and can have a low dark current. A photodiode (10) according to the present invention includes a buffer layer (2) positioned on and in contact with an InP substrate (1), and an absorption layer (3) positioned on and in contact with the buffer layer, wherein the absorption layer includes 50 or more pairs in which a first semiconductor layer 3a and a second semiconductor layer 3b constitute a single pair, the first semiconductor layer 3a having a bandgap energy of 0.73 eV or less, the second semiconductor layer 3b having a larger bandgap energy than the first semiconductor layer 3a, and the first semiconductor layer 3a and the second semiconductor layer 3b constitute a strain-compensated quantum well structure and each have a thickness of 1 nm or more and 10 nm or less.
Abstract:
A light-receiving element includes an InP substrate 1, a light-receiving layer 3 having an MQW and located on the InP substrate 1, a contact layer 5 located on the light-receiving layer 3, a p-type region 6 extending from a surface of the contact layer 5 to the light-receiving layer, and a p-side electrode 11 that forms an ohmic contact with the p-type region. The light-receiving element is characterized in that the MQW has a laminated structure including pairs of an InxGa1-xAs (0.38≦x≦0.68) layer and a GaAs1-ySby (0.25≦y≦0.73) layer, and in the GaAs1-ySby layer, the Sb content y in a portion on the InP substrate side is larger than the Sb content y in a portion on the opposite side.
Abstract translation:光接收元件包括InP衬底1,具有MQW且位于InP衬底1上的光接收层3,位于光接收层3上的接触层5,从 接触层5的表面与光接收层和与p型区域形成欧姆接触的p侧电极11。 光接收元件的特征在于MQW具有包括In x Ga 1-x As(0.38和nlE; x< lE; 0.68)层和GaAs1-ySby(0.25& nlE; y≦̸ 0.73)层的层的叠层结构,并且在GaAs1 -ySby层,InP衬底侧的部分中的Sb含量y大于相对侧的部分中的Sb含量y。
Abstract:
A photodiode and the like capable of preventing the responsivity on the short wavelength side from deteriorating while totally improving the responsivity in a type II MQW structure, is provided. The photodiode is formed on a group III-V compound semiconductor substrate 1, and includes a pixel P. The photodiode includes an absorption layer 3 of a type II MQW structure, which is located on the substrate 1. The MQW structure includes fifty or more pairs of two different types of group III-V compound semiconductor layers 3a and 3b. The thickness of one of the two different types of group III-V compound semiconductor layers, which layer 3a has a higher potential of a valence band, is thinner than the thickness of the other layer 3b.
Abstract:
A photodiode array includes a substrate of a common read-out control circuit; and a plurality of photodiodes arrayed on the substrate and each including an absorption layer, and a pair of a first conductive-side electrode and a second conductive-side electrode. In this photodiode array, each of the photodiodes is isolated from adjacent photodiodes, the first conductive-side electrodes are provided on first conductivity-type regions and electrically connected in common across all the photodiodes, and the second conductive-side electrodes are provided on second conductivity-type regions and individually electrically connected to read-out electrodes of the read-out control circuit.
Abstract:
Provided are a light-receiving element which has sensitivity in the near-infrared region and in which a good crystal quality is easily obtained, a one-dimensional or two-dimensional array of the light-receiving elements is easily formed with a high accuracy, and a dark current can be reduced; a light-receiving element array; and methods for producing the same.A light-receiving element includes a group III-V compound semiconductor stacked structure including an absorption layer 3 having a pn-junction 15 therein, wherein the absorption layer has a multiquantum well structure composed of group III-V compound semiconductors, the pn-junction 15 is formed by selectively diffusing an impurity element into the absorption layer, and the concentration of the impurity element in the absorption layer is 5×1016 cm−3 or less. A diffusion concentration distribution control layer 4 has an n-type impurity concentration of 2×1015/cm3 or less before the diffusion, the diffusion concentration distribution control layer having a portion adjacent to the absorption layer, the portion having a low impurity concentration.
Abstract:
There is provided, for example, a food quality examination device configured to inspect the quality of food with high sensitivity using an InP-based photodiode in which a dark current is decreased without a cooling mechanism and the sensitivity is extended to a wavelength of 1.8 μm or more. An absorption layer has a multiquantum well structure composed of a III-V group semiconductor. A pn junction is formed by selectively diffusing an impurity element into the absorption layer. The concentration of the impurity in the absorption layer is 5×1016/cm3 or less. A diffusion concentration distribution control layer composed of III-V group semiconductor is disposed in contact with the absorption layer on a side of the absorption layer opposite the side adjacent to the InP substrate, the bandgap of the diffusion concentration distribution control layer is lower than that of the InP, the diffusion concentration distribution control layer has an n-type impurity concentration of 2×1015/cm3 or less before the diffusion, the diffusion concentration distribution control layer having a portion adjacent to the absorption layer, and the portion having a low impurity concentration. The food quality examination device receives light having at least one wavelength of 3 μm or less within the absorption band of water, thereby performing the inspection.
Abstract:
Provided are a light-receiving element which has sensitivity in the near-infrared region and in which a good crystal quality is easily obtained, a one-dimensional or two-dimensional array of the light-receiving elements is easily formed with a high accuracy, and a dark current can be reduced; a light-receiving element array; and methods for producing the same.A light-receiving element includes a group III-V compound semiconductor stacked structure including an absorption layer 3 having a pn-junction 15 therein, wherein the absorption layer has a multiquantum well structure composed of group III-V compound semiconductors, the pn-junction 15 is formed by selectively diffusing an impurity element into the absorption layer, and the concentration of the impurity element in the absorption layer is 5×1016 cm−3 or less. A diffusion concentration distribution control layer 4 has an n-type impurity concentration of 2×1015/cm3 or less before the diffusion, the diffusion concentration distribution control layer having a portion adjacent to the absorption layer, the portion having a low impurity concentration.