Abstract:
A method for calculating optimal length of trace between adjoining bends is disclosed. First, a rising time Tr of signal of a trace is defined, and a unit transmitting delay TD of the trace and a transmitting delay Td3 of bend in the trace are calculated. A transmitting delay Td2 of a trace segment between the adjoining bends in the trace is calculated with Tr and Td3. Finally, an equation L2=Td2/TD is calculated for obtaining the optimal length L2 of the trace between a first bend and a second bend.
Abstract:
An image de-interlacing method comprises: (a) defining a first threshold value and a second threshold value, wherein the second threshold value is larger than the first threshold value; (b) generating a parameter according to motion level of a interlaced image; and (c) utilizing a first interpolation method and a second interpolation method to jointly process the interlaced image if the parameter is in a range between the first threshold value and the second threshold value.
Abstract:
An image processing method for determining a motion vector of an interpolated block in a covered/uncovered area of an interpolated picture. The method comprises determining image difference values of successive blocks according to original motion vectors of the successive blocks; determining first and second motion vectors for the successive blocks according to the image difference values, wherein the first and the second motion vector of one of the successive blocks are the original motion vectors of two blocks located in both side of a block having a maximum image difference value; determining a starting point of the interpolated block according to the first and the second motion vectors of the successive blocks; and selecting one of the first and the second motion vectors of the interpolated block as the motion vector of the interpolated block according to the starting point and a starting point in a previous interpolated picture.
Abstract:
A method for calculating optimal length of trace between adjoining bends is disclosed. First, a rising time Tr of signal of a trace is defined, and a unit transmitting delay TD of the trace and a transmitting delay Td3 of bend in the trace are calculated. A transmitting delay Td2 of a trace segment between the adjoining bends in the trace is calculated with Tr and Td3. Finally, an equation L2=Td2/TD is calculated for obtaining the optimal length L2 of the trace between a first bend and a second bend.
Abstract:
A spiral spring for a liquid crystal display stand includes a sliding base, a sliding block, and a spiral spring. The sliding block slides along rails in the sliding base. One end of the sliding block has holes to secure one end of the spiral spring which has the other end secured to holes of the sliding base. The spiral spring has a pair of bending edges to form an angle with respect to the spring to reinforce the strength of the spring.
Abstract:
A network transformer module includes a first magnetic element, a second magnetic element, and a connection board. The first magnetic element includes a first winding set and a first core, and the first winding set is wound around the first core. The second magnetic element includes a second winding set and a second core, and the second winding set is wound around the second core. The first winding set of the first magnetic element is independent from the second winding set of the second magnetic element, and the first winding set is not wound around the second core. The connection board electrically couples the first winding set with the second winding set. A magnetic element is also disclosed herein.
Abstract:
A method for compensating length of differential pair and a method for calculating compensation length of the zigzagging type delay line thereof are provided. The method for calculating compensation length of the zigzagging type delay line includes following steps. The quantity A of hypotenuse and the quantity B of bends of the zigzagging type delay line are counted. The width W of the zigzagging type delay line is measured. The height S1 of the parallel line segment of the zigzagging type delay line is measured. An equation L diff = A ( 2 - 1 ) ( S 1 - ( 5 W / 6 ) ) + B { [ W 5 ( 1 + 2 ) ] 2 + [ W 5 ] 2 - [ W 5 ( 1 + 2 ) ] } is calculated for calculating the compensation length Ldiff of the zigzagging type delay line.
Abstract:
An image de-interlacing method comprises: (a) defining a first threshold value and a second threshold value, wherein the second threshold value is larger than the first threshold value; (b) generating a parameter according to motion level of a interlaced image; and (c) utilizing a first interpolation method and a second interpolation method to jointly process the interlaced image if the parameter is in a range between the first threshold value and the second threshold value.
Abstract:
A heat treatment furnace and conveyor with multi-conveyance, wherein the top of the furnace has a feeder and the bottom of which has a disposal. The inside of the furnace has a number of conveying units, each unit is in circular status lined up and move with the feeder at the top of the first pallet, and the end of each pallet is connected to the beginning of the next pallet, and the end of the last pallet is connected to the disposal. This reduces the width of the furnace and extend the length of conveying which enhances the heat treatment processing time. The furnace is also divided into several sections, as a heating section and a cooling section. The heating section is equipped with electric heating elements while the cooling section is not. The pallet belt is in a flat surface with some ribs to prevent objects from sticking or sliding off.
Abstract:
An image processing method for determining a motion vector of an interpolated block in a covered/uncovered area of an interpolated picture. The method comprises determining image difference values of successive blocks according to original motion vectors of the successive blocks; determining first and second motion vectors for the successive blocks according to the image difference values, wherein the first and the second motion vector of one of the successive blocks are the original motion vectors of two blocks located in both side of a block having a maximum image difference value; determining a starting point of the interpolated block according to the first and the second motion vectors of the successive blocks; and selecting one of the first and the second motion vectors of the interpolated block as the motion vector of the interpolated block according to the starting point and a starting point in a previous interpolated picture.