Abstract:
A detection apparatus which illuminates a sample and detects light reflected by the sample, comprises a light source, a columnar reflecting member having a columnar reflecting surface which reflects light having entered a first end of the columnar reflecting member by a plurality of number of times, and emits the light from a second end of the columnar reflecting member, a mirror which reflects light radiated by the light source so as to guide to the first end and a detector, wherein the sample is illuminated with the light emitted from the second end, and the detector is configured to detect the light which has been reflected by the sample and has passed through the columnar reflecting member, and a reflecting surface of the mirror is a concave surface, and a shape of a reflecting surface of the mirror on a section perpendicular to an axis of the columnar reflecting member is concave.
Abstract:
A projection optical system includes an optical element that includes and locally uses a reflective or refractive area that is substantially axially symmetrical around an optical axis, the optical element being rotatable around the optical axis.
Abstract:
A detection apparatus which illuminates a sample and detects light reflected by the sample, comprises a light source, a columnar reflecting member having a columnar reflecting surface which reflects light having entered a first end of the columnar reflecting member by a plurality of number of times, and emits the light from a second end of the columnar reflecting member, a mirror which reflects light radiated by the light source so as to guide to the first end and a detector, wherein the sample is illuminated with the light emitted from the second end, and the detector is configured to detect the light which has been reflected by the sample and has passed through the columnar reflecting member, and a reflecting surface of the mirror is a concave surface, and a shape of a reflecting surface of the mirror on a section perpendicular to an axis of the columnar reflecting member is concave.
Abstract:
A projection optical system used for an exposure apparatus to projecting a reduced size of an image of an object onto an image plane includes plural refractive elements that dispense with a reflective element having a substantial optical power, wherein the projection optical system forms an intermediate image.
Abstract:
A projection optical system used for an exposure apparatus to projecting a reduced size of an image of an object onto an image plane includes plural refractive elements that dispense with a reflective element having a substantial optical power, wherein the projection optical system forms an intermediate image.
Abstract:
A projection optical system includes an optical element that includes and locally uses a reflective or refractive area that is substantially axially symmetrical around an optical axis, the optical element being rotatable around the optical axis.
Abstract:
A projection exposure apparatus having a function for adjusting a projection magnification, a symmetric distortion aberration and another optical characteristic of a projection optical system is disclosed, wherein, when the projection magnification and the symmetric distortion aberration are adjusted, the other optical characteristic of the projection optical system is adjusted so that a change thereof is reduced very small or zero, such that good optical performance of the projection optical system is retained.
Abstract:
A projection optical system of the present invention includes an optical element group that includes optical elements, and a controller that drives at least one of the first optical elements. The optical element group includes aspheric surfaces having a complementary relationship with each other and are arranged so that the aspheric surfaces face each other. The controller changes a relative position between the optical elements in a first direction and a second direction orthogonal to the first direction to control optical performances of the projection optical system corresponding to each of the first direction and the second direction.
Abstract:
A projection optical system is configured to project an image of an object plane onto an image plane, and includes a first optical element having an aspheric shape that is rotationally asymmetric with respect to an optical axis, a moving unit configured to move the first optical element in a direction perpendicular to the optical axis, and a second optical element fixed on the optical axis, and configured to reduce an optical path length difference caused by an aspheric surface of the first optical element, the second optical element having no aspheric shape complement to the aspheric shape of the first optical element.
Abstract:
An exposure apparatus includes a illumination optical system for illuminating a reticle with light from a light source, and a projection optical system for projecting a pattern of the reticle onto an object, said projection optical system includes a lens closest to the object, wherein a surface on the object side of the lens is smaller than an effective area of a surface on the reticle side of the lens, and wherein said exposure apparatus exposes the object via a liquid that is filled in a space between the lens and the object.