Abstract:
The spatial information detection device emits, to a space including an intended area, signal light defined as light modulated with a modulation signal defined as a square wave signal having high and low level periods appearing alternately, each of the periods having its length randomly selected from integral multiples of a unit time period. The device generates signal electric charges by accumulating electric charges generated in response to light from the space in a collection time period determined by a demodulation signal defined as a signal having the same waveform as that of the modulation signal or that of the inverted modulation signal. The device corrects, using correction information regarding an effect caused by light from an unintended area, the amount of signal electric charges as an amount of intended electric charges produced in response to light from the intended area, thereby generating spatial information.
Abstract:
The distance measuring device includes a light source (1), a light-receiving sensor (2), a timing controller (5), a distance calculator (6), and a delay controller (8). The timing controller (5) outputs a modulation signal and plural reference timing signals. The modulation signal is a square wave signal having high and low level periods appearing alternately. Each of the high and low level periods has its length randomly selected from integral multiples of a predetermined unit time period. The reference timing signals include a signal having the same waveform as that of the modulation signal and a signal having the same waveform as that of the inverted modulation signal. The light source (1) varies an intensity of the light in concordance with the modulation signal. The delay controller (8) delays the plural reference timing signals by the delay period (Td) to create plural timing signals respectively. The light-receiving sensor (2) accumulates the electric charges generated within the reception time period, with regard to each of the timing signals. The distance calculator (6) calculates the time difference (τ) from amounts of the electric charges respectively associated with the timing signals, and calculates a distance (L) to the target (3) on the basis of the time difference (τ) and the delay period (Td).
Abstract:
An image processing device for generating both of a distance image and a gray image from an electrical output of a light receiving element on the precondition that a light intensity-modulated at a modulation frequency is irradiated into a target space. This device has an image generator for generating the distance image having pixel values, each of which provides a distance value between an object in the target space and the device, in accordance with a phase difference between the irradiated light and the received light, and the gray image having pixel values, each of which provides a gray value of the object, in accordance with an intensity of the received light. By use of an output of the image generator, an outline of the object can be extracted.
Abstract:
A photodetector capable of improving dynamic range for input signals is provided. This photodetector includes a photoelectric converting portion, a charge separating portion, a charge accumulating portion, a barrier electrode formed the charge separating portion and the charge accumulating portion, and a barrier-height adjusting portion electrically connected to the barrier electrode. Undesired electric charges such as generated when environment light is incident on the photoelectric converting portion are removed by the charge separating portion. A potential barrier with an appropriate height is formed under the barrier electrode by applying a voltage to the barrier electrode according to an electric charge amount supplied from the charge separating portion to the barrier-height adjusting portion. Electric charges flowing from the charge separating portion into the charge accumulating portion over the potential barrier are provided as an output of the photodetector.
Abstract:
A light detecting element 1 including an element formation layer 22 which contains a well region 31. A surface electrode 25 is formed on the layer 22 through an insulating layer 24. The region 31 contains an electron holding region 32. The region 32 contains a hole holding region 33. The layer 24 contains a control electrode 26 facing the region 33 through the layer 24. Electrons and holes are generated at the layer 22. There are two selected states. In one state, by controlling each electric potential applied to the electrodes 25, 26, electrons are gathered at the region 32, while holes are held at the region 33. In another state, recombination is stimulated between the electrons and the holes. After the recombination, the remaining electrons are picked out as received light output.
Abstract:
In an apparatus using an intensity-modulated light for detection of spatial information based upon light intensity of light reflected from a target space, a timing synchronization circuit is provided to synchronize a phase of the intensity-modulated light from a light-emitting element with a timing of operating a light-receiving element receiving the intensity-modulated light. The light-receiving element is caused to operate for enabling the detection of intensity of the received light for each of a plurality of phase regions within one cycle of the intensity-modulated light. The timing synchronization circuit functions to compare a cyclic variation determining the operation of the light-receiving element with a cyclic variation associated with an output from a light-emitting element driving circuit in order to keep a constant phase difference between these two cyclic variations.
Abstract:
An image processing device for generating both of a distance image and a gray image from an electrical output of a light receiving element on the precondition that a light intensity-modulated at a modulation frequency is irradiated into a target space. This device has an image generator for generating the distance image having pixel values, each of which provides a distance value between an object in the target space and the device, in accordance with a phase difference between the irradiated light and the received light, and the gray image having pixel values, each of which provides a gray value of the object, in accordance with an intensity of the received light. By use of an output of the image generator, an outline of the object can be extracted.
Abstract:
A light receiving device using a new method of controlling sensitivity and a spatial information detecting apparatus using the same technical concept are provided. This light receiving device comprises a photoelectric converter for receiving a light at a light receiving surface and generating amounts of electric charges corresponding to an intensity of received light; electrodes formed on the photoelectric converter; a charge collection area induced in the photoelectric converter by applying a control voltage to the electrodes to collect at least part of the electric charges generated in the photoelectric converter; a charge ejector for outputting the electric charges from the charge collection area; and a sensitivity controller for controlling the number of the electrodes, to which the control voltage is applied, to change size of the charge collection area in the light receiving surface of the photoelectric converter. As compared with conventional ones, this light receiving device is of a relatively simple structure with an increased aperture ratio and excellent in S/N ratio.
Abstract:
A spatial information detecting device using an intensity-modulated light is provided. This device comprises a photoelectric converter for receiving a light from a space into which a light intensity-modulated at a predetermined emission frequency is being irradiated, and generating an electrical output corresponding to an intensity of received light; a local oscillator circuit for outputting a local oscillator signal having a local oscillator frequency different from the emission frequency; a sensitivity controller for mixing the local oscillator signal with the electrical output to frequency convert the electrical output into a beat signal having a lower frequency than the emission frequency; an integrator for performing integration of said beat signal at a predetermined timing; and an analyzer for detecting information concerning the space according to an output of the integrator. According to this device, it is possible to accurately detect the spatial information without using a switching element having high-speed response at the light receiving side.
Abstract:
The distance measuring device includes a light source (1), a light-receiving sensor (2), a timing controller (5), a distance calculator (6), and a delay controller (8). The timing controller (5) outputs a modulation signal and plural reference timing signals. The modulation signal is a square wave signal having high and low level periods appearing alternately. Each of the high and low level periods has its length randomly selected from integral multiples of a predetermined unit time period. The reference timing signals include a signal having the same waveform as that of the modulation signal and a signal having the same waveform as that of the inverted modulation signal. The light source (1) varies an intensity of the light in concordance with the modulation signal. The delay controller (8) delays the plural reference timing signals by the delay period (Td) to create plural timing signals respectively. The light-receiving sensor (2) accumulates the electric charges generated within the reception time period, with regard to each of the timing signals. The distance calculator (6) calculates the time difference (τ) from amounts of the electric charges respectively associated with the timing signals, and calculates a distance (L) to the target (3) on the basis of the time difference (τ) and the delay period (Td).