Abstract:
A thermoplastic composite suitable for induction welding including a polymer laminate including two or more plies, wherein the polymer is selected from polyaryletherketone (PAEK) polymers such as polyetherketone (PEK), polyether ether ketone (PEEK), polyetherketoneketone (PEKK), polyetheretherketoneketone (PEEKK), and polyetherketoneetherketoneketone (PEKEKK), or preferably, the polymer laminate comprises polyetherketoneketone (PEKK), and one or more layers of a continuous carbon nanomaterial based susceptor between each pair of the plies. Methods for making the thermoplastic composite are also described.
Abstract:
Methods for aligning nanoscale fibers are provided. One method comprises providing a network of nanoscale fibers and mechanically stretching the network of nanoscale fibers in a first direction. The network of nanoscale fibers is substantially devoid of a liquid. A network of aligned nanoscale fibers and a composite comprising a network of aligned nanoscale fibers are also provided.
Abstract:
A communication server, including a partial parser module, a storage module and a lookup module, is provided. The partial parser module parses some, but not all, strings of a message and generates partial parsed data. The storage module stores pre-parsed data which represents a complete parsing of a message. The lookup module looks for the corresponding pre-parsed data from the storage module, using the partial parsed data. The server sends the message according to at least the corresponding pre-parsed data.
Abstract:
A membrane electrode assembly (MEA) for a fuel cell comprising a catalyst layer and a method of making the same. The catalyst layer can include a plurality of catalyst nanoparticles, e.g., platinum, disposed on buckypaper. The catalyst layer can have 1% or less binder prior to attachment to the membrane electrode assembly. The catalyst layer can include (a) single-wall nanotubes, small diameter multi-wall nanotubes, or both, and (b) large diameter multi-wall nanotubes, carbon nanofibers, or both. The ratio of (a) to (b) can range from 1:2 to 1:20. The catalyst layer can produce a surface area utilization efficiency of at least 60% and the platinum utilization efficiency can be 0.50 gPt/kW or less.
Abstract:
A method is provided for functionalizing nanoscale fibers including reacting a plurality of nanoscale fibers with at least one epoxide monomer to chemically bond the at least one epoxide monomer to surfaces of the nanoscale fibers to form functionalized nanoscale fibers. Functionalized nanoscale fibers and nanoscale fiber films are also provided.
Abstract:
A membrane electrode assembly (MEA) for a fuel cell comprising a gradient catalyst structure and a method of making the same. The gradient catalyst structure can include a plurality of catalyst nanoparticles, e.g., platinum, disposed on layered buckypaper. The layered buckypaper can include at least a first layer and a second layer and the first layer can have a lower porosity compared to the second layer. The gradient catalyst structure can include single-wall nanotubes, carbon nanofibers, or both in the first layer of the layered buckypaper and can include carbon nanofibers in the second layer of the layered buckypaper. The MEA can have a catalyst utilization efficiency of at least 0.35 gcat/kW or less.
Abstract:
Methods for aligning nanoscale fibers are provided. One method comprises providing a network of nanoscale fibers and mechanically stretching the network of nanoscale fibers in a first direction. The network of nanoscale fibers is substantially devoid of a liquid. A network of aligned nanoscale fibers and a composite comprising a network of aligned nanoscale fibers are also provided.
Abstract:
Methods are provided for making a composite material that includes (a) providing at least one sheet which includes woven or non-woven glass fibers, carbon fibers, aramid fibers, or nanoscale fibers; and (b) stitching a plurality of stitches of a thermally conductive fiber through the at least one sheet in a Z-axis direction to form paths of higher conductivity through the sheet of material to increase its thermal conductivity in the Z-axis.
Abstract:
An apparatus and a method for dynamically determining a connection establishment mechanism between virtual machines (VMs) based on locations of the VMs. The apparatus includes a communication agent unit for receiving messages relating to the locations of the VMs, a control unit for determining the connection establishment mechanism between the VMs based on the received messages and a controlling mechanism to establish a connection between the VMs according to the determined connection establishment mechanism. The method includes receiving messages relating to the locations of the VMs, determining the connection establishment mechanism between the VMs based on the received messages, and establishing a connection between the VMs according to the determined connection establishment mechanism.
Abstract:
Methods are provided for mechanically chopping nanotubes and other nanoscale fibrous materials. The method includes forming a macroscale article which include the nanoscale fibers, and then mechanically cutting the macroscale article into a finely divided form. In one embodiment, these steps are repeated. The nanoscale fibers may be carbon nanotubes, which optionally are aligned in the macroscale article. The macroscale article may be in the form of or include one or more buckypapers. In one embodiment, the macroscale article further includes a solid matrix material in which the nanoscale fibers are contained or dispersed. The forming step can include making a suspension of nanoscale fibers dispersed in a liquid medium and then solidifying the liquid medium to form the macroscale article. After the mechanical cutting step, the medium can be dissolved or melted to enable separation of the chopped nanoscale fibers from the medium.