Abstract:
A method of making a formed ceramic abrasive particle is presented that includes molding a dispersion of a ceramic abrasive particle precursor mixture. The method also includes drying the molded dispersion to form a ceramic abrasive particle particle precursor. The method also includes calcining the ceramic abrasive particle precursor. The method also includes sintering the ceramic abrasive particle precursor to form the formed ceramic abrasive particle. The method also includes impregnating the ceramic abrasive particle precusor with a mixture. The mixture includes one or more of a first group consisting of: an oxide of yttrium, praseodymium, samarium, ytterbium, neodymium, lanthanum, gadolinium, dysprosium, and erbium or one or more of a second group consisting of: oxide of iron, magnesium, zinc, silicon, cobalt, nickel, zirconium, hafnium, chromium, cerium, titanium. Impregnating the ceramic abrasive particle precursor occurs after drying, calcining or sintering.
Abstract:
A multiphase abrasive particle precursor is disclosed. The precursor includes a first phase of a first material with a substantially constant first composition throughout the first phase. The precursor also includes a second phase, of a second material, with a substantially constant composition throughout the second phase. The precursor includes an interface between the first and second phases. The multiphase abrasive particle precursor is a shaped abrasive particle precursor.
Abstract:
A magnetizable abrasive particle is presented. The magnetizable abrasive particle has a ceramic particle having an outer surface. The magnetizable abrasive particle also has a magnetic coating layer applied to the outer surface of the ceramic particle prior to sintering. The sintered magnetizable particle is responsive to a magnetic field.
Abstract:
A bonded abrasive article includes elongate shaped abrasive particles. The elongate shaped abrasive particles comprise an elongate shaped ceramic body having opposed first and second ends joined to each other by at least two longitudinal sidewalls. At least one of the at least two longitudinal sidewalls is concave along its length. At least one of the first and second ends is a fractured surface.
Abstract:
An elongate shaped abrasive particle comprises an elongate shaped ceramic body having opposed first and second ends joined to each other by at least two longitudinal sidewalls. At least one of the at least two longitudinal sidewalls is concave along its length. At least one of the first and second ends is a fractured surface. Methods of making elongate shaped abrasive particles and abrasive articles including them are also disclosed.
Abstract:
Shaped ceramic articles can be obtained by screen printing the desired shapes from a dispersion of a precursor of the ceramic onto a receiving surface using a transfer assisted technique that applies a differential pressure, at least partially drying the screen printed shapes, and firing them to generate the shaped ceramic articles. Shaped abrasive particles made using lower viscosity sol gels that tended to flow or creep after the screen printing formation were found to have higher grinding performance over screen printed shaped abrasive particles made with higher viscosity sol gels.
Abstract:
A bonded abrasive article includes elongate shaped abrasive particles. The elongate shaped abrasive particles comprise an elongate shaped ceramic body having opposed first and second ends joined to each other by at least two longitudinal sidewalls. At least one of the at least two longitudinal sidewalls is concave along its length. At least one of the first and second ends is a fractured surface.
Abstract:
A method of making elongated abrasive particles includes five steps. Step 1) includes providing a mold having parallel linear grooves, partially interrupted at predetermined intervals by transverse obstructions. Step 2) includes filling the parallel linear grooves with a flowable abrasive particle precursor composition. Step 3) includes at least partially drying the flowable abrasive particle precursor composition to form an at least partially dried abrasive particle precursor composition. Step 4) includes separating that composition from the mold, thereby forming elongated precursor abrasive particles having a shape corresponding to portions of the parallel linear grooves disposed between the transverse obstructions. At least one of the first and second opposite ends of the elongated precursor abrasive particles comprises both a molded portion and a fractured portion. Step 5) converts the elongated precursor abrasive particles into elongated abrasive particles. Elongated abrasive particles preparable by the method and abrasive articles containing them are also disclosed.
Abstract:
An abrasive article comprises elongated abrasive particles retained in at least one binder. The elongated abrasive particles comprise a ceramic body bounded by at least two longitudinally-oriented contiguous surfaces and first and second ends separated by the at least two longitudinally-oriented surfaces. At least one of the first and second ends comprises both a molded portion and a fractured portion.
Abstract:
Abrasive particles comprising shaped abrasive particles each having a sidewall, each of the shaped abrasive particles comprising alpha alumina and having a first face and a second face separated by a sidewall and having a maximum thickness, T; and the shaped abrasive particles further comprising a plurality of grooves on the second face.