POWER SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SUCH A POWER SEMICONDUCTOR DEVICE

    公开(公告)号:US20180047652A1

    公开(公告)日:2018-02-15

    申请号:US15677625

    申请日:2017-08-15

    Applicant: ABB Schweiz AG

    Abstract: A power semiconductor device is provided comprising a wafer, wherein in a termination region of the device a passivation layer structure is formed at least on a portion of a surface of the wafer and the passivation layer structure comprises in an order from the surface of the wafer in a direction away from the wafer a semi insulating layer, a silicon nitride layer, an undoped silicate glass layer and an organic dielectric layer. The silicon nitride layer has a layer thickness of at least 0.5 μm. The organic dielectric layer its attached to the undoped silicate glass layer and the undoped silicate glass layer is attached to the silicon nitride layer.

    Method for manufacturing a wide bandgap junction barrier schottky diode

    公开(公告)号:US09887086B2

    公开(公告)日:2018-02-06

    申请号:US15616382

    申请日:2017-06-07

    Applicant: ABB Schweiz AG

    Abstract: A method for manufacturing a wide bandgap junction barrier Schottky diode having an anode side and a cathode side is provided, wherein an (n+) doped cathode layer is arranged on the cathode side, at least on p doped anode layer is arranged on the anode side, an (n−) doped drift layer is arranged between the cathode layer and the at least one anode layer, which drift layer extends to the anode side, wherein the following manufacturing steps are performed: a) providing an (n+) doped wide bandgap substrate, b) creating the drift layer on the cathode layer, c) creating the at least one anode layer on the drift layer, d) applying a first metal layer on the anode side on top of the drift layer for forming a Schottky contact, characterized in, that e) creating a second metal layer on top of at least one anode layer, wherein after having created the first and the second metal layer, a metal layer on top of the at least one anode layer has a second thickness and a metal layer on top of the drift layer has a first thickness, wherein the second thickness is smaller than the first thickness, f) then performing a first heating step at a first temperature, by which due the second thickness being smaller than the first thickness an ohmic contact is formed at the interface between the second metal layer and the at least one anode layer, wherein performing the first heating step such that a temperature below the first metal layer is kept below a temperature for forming an ohmic contact.

    METHOD FOR MANUFACTURING A WIDE BANDGAP JUNCTION BARRIER SCHOTTKY DIODE

    公开(公告)号:US20170271158A1

    公开(公告)日:2017-09-21

    申请号:US15616382

    申请日:2017-06-07

    Applicant: ABB Schweiz AG

    Abstract: A method for manufacturing a wide bandgap junction harrier Schottky diode (1) having an anode side (10) and a cathode side (15) is provided, wherein an (n±) doped cathode layer (2) is arranged on the cathode side (15), at least one p doped anode layer (3) is arranged on the anode side (10), an (n−) doped drift layer (4) is arranged between the cathode layer (2) and the at least one anode layer (3), which drift layer (4) extends to the anode side (10), wherein the following manufacturing steps are performed: a) providing an (n+) doped wide bandgap substrate(100), b) creating the drift layer (4) on the cathode layer (2), c) creating the at least one anode layer (3) on the drift layer (4), d) applying a first metal layer (5) on the anode side (10) on top of the drift layer (4) for forming a Schottky contact (55), characterized in, that e) creating a second metal layer (6) on top of at least one anode layer (3), wherein after having created the first and the second metal layer (5, 6), a metal layer on top of the at least one anode layer (3) has a second thickness (64) and a metal layer on top of the drift layer (4) has a first thickness (54), wherein the second thickness (64) is smaller than the first thickness (54), 1) then performing a first heating step (63) at a first temperature, by which due the second thickness (64) being smaller than the first thickness (54) an ohmic contact (65) is formed at the interface between the second metal layer (6) and the at least one anode layer (3), wherein performing the first healing step (63) such that a temperature below the first metal layer (5) is kept below a temperature for forming an ohmic contact.

    POWER SEMICONDUCTOR MODULE WITH SHORT CIRCUIT FAILURE MODE

    公开(公告)号:US20190355634A1

    公开(公告)日:2019-11-21

    申请号:US16529295

    申请日:2019-08-01

    Applicant: ABB Schweiz AG

    Abstract: A power semiconductor device includes a base plate; a Si chip including a Si substrate, the Si chip attached to the base plate; a first metal preform pressed with a first press pin against the Si chip; a wide bandgap material chip comprising a wide bandgap substrate and a semiconductor switch provided in the wide bandgap substrate, the wide bandgap material chip attached to the base plate; and a second metal preform pressed with a second press pin against the wide bandgap material chip; the Si chip and the wide bandgap material chip are connected in parallel via the base plate and via the first press pin and the second press pin; the first metal preform is adapted for forming a conducting path through the Si chip, when heated by an overcurrent; and the second metal preform is adapted for forming an temporary conducting path through the wide bandgap material chip or an open circuit, when heated by an overcurrent.

    SWITCHING OF PARALLELED REVERSE CONDUCTING IGBT AND WIDE BANDGAP SWITCH

    公开(公告)号:US20190273493A1

    公开(公告)日:2019-09-05

    申请号:US16411716

    申请日:2019-05-14

    Applicant: ABB Schweiz AG

    Abstract: A semiconductor module comprises reverse conducting IGBT connected in parallel with a wide bandgap MOSFET, wherein each of the reverse conducting IGBT and the wide bandgap MOSFET comprises an internal anti-parallel diode. A method for operating a semiconductor module with the method including the steps of: determining a reverse conduction start time, in which the semiconductor module starts to conduct a current in a reverse direction, which reverse direction is a conducting direction of the internal anti-parallel diodes; applying a positive gate signal to the wide bandgap MOSFET after the reverse conduction start time; determining a reverse conduction end time based on the reverse conduction start time, in which the semiconductor module ends to conduct a current in the reverse direction; and applying a reduced gate signal to the wide bandgap MOSFET a blanking time interval before the reverse conduction end time, the reduced gate signal being adapted for switching the wide bandgap MOSFET

Patent Agency Ranking