Abstract:
Methods and compositions for treatment and therapy of cancer are provided. Specifically, antagonists specific for interleukin-17 receptor B (IL-17RB) and its ligand IL-17B are provided. Potent neutralizing antibodies specific for IL-17RB and methods for their manufacture and use are disclosed. The invention also relates to antisense, RNAi and shRNA compositions for the prevention and treatment of cancer, in particular breast cancer and pancreatic cancer.
Abstract:
Immunogenic compositions comprising partially glycosylated viral glycoproteins for use as vaccines against viruses are provided. Vaccines formulated using mono-, di-, or tri-glycosylated viral surface glycoproteins and polypeptides provide potent and broad protection against viruses, even across strains. Pharmaceutical compositions comprising monoglycosylated hemagglutinin polypeptides and vaccines generated therefrom and methods of their use for prophylaxis or treatment of viral infections are disclosed. Methods and compositions are disclosed for influenza virus HA, NA and M2, RSV proteins F, G and SH, Dengue virus glycoproteins M or E, hepatitis C virus glycoprotein E1 or E2 and HIV glycoproteins gp120 and gp41.
Abstract:
Immunogenic compositions comprising partially glycosylated viral glycoproteins for use as vaccines against viruses are provided. Vaccines formulated using mono-, di-, or tri-glycosylated viral surface glycoproteins and polypeptides provide potent and broad protection against viruses, even across strains. Pharmaceutical compositions comprising monoglycosylated hemagglutinin polypeptides and vaccines generated therefrom and methods of their use for prophylaxis or treatment of viral infections are disclosed. Methods and compositions are disclosed for influenza virus HA, NA and M2, RSV proteins F, G and SH, Dengue virus glycoproteins M or E, hepatitis C virus glycoprotein E1 or E2 and HIV glycoproteins gp120 and gp41.
Abstract:
The present disclosure relates to glycoproteins, particularly monoclonal antibodies, comprising a glycoengineered Fc region, wherein said Fc region comprises an optimized N-glycan having the structure of Sia2(α2-6)Gal2GlcNAc2Man3GlcNAc2. The glycoengineered Fc region binds FcγRIIA or FcγRIIIA with a greater affinity, relative to comparable monoclonal antibodies comprising the wild-type Fc region. The monoclonal antibodies of the invention are particularly useful in preventing, treating, or ameliorating one or more symptoms associated with a disease, disorder, or infection where an enhanced efficacy of effector cell function (e.g., ADCC) mediated by FcγR is desired, e.g., cancer, autoimmune, infectious disease, and in enhancing the therapeutic efficacy of therapeutic antibodies the effect of which is mediated by ADCC.
Abstract:
The present disclosure provides a glycoengineered SARS-CoV-2 spike protein which is capable of eliciting an enhanced immune response relative to a native spike protein of SARS-CoV-2 and its variants. The glycoengineered spike protein exposes the glycosylation sites and at the same time preserves the tertiary structure of the spike protein. The present disclosure therefore provides improved immunogens, vaccines, and methods for better prevention and treatment of the emerging coronavirus infections.
Abstract:
The present disclosure relates to compositions and methods of use comprising antibodies or binding fragments thereof further comprising universal Fc glycoforms.
Abstract:
Methods for production of virus particles with simplified glycosylation on structural or surface proteins are provided. When used as targets for vaccine production, the conserved nature of such sites generates vaccines that are less sensitive to viral mutations. Use of glycosylation inhibitors for production of viruses with simplified glycosylation profiles are disclosed. An exemplary disclosure of influenza viruses and methods for production of mono-glycosylated influenza virus particles is provided. Methods for production of mono-glycosylated forms of influenza A virus, NIBRG-14 (H5N1) are provided.
Abstract:
The present disclosure relates to a chimeric influenza virus hemagglutinin (HA) polypeptide, comprising one or more stem domain sequence, each having at least 60% homology with a stem domain consensus sequence of H1 subtype HA (H1 HA) and/or H5 subtype HA (H5 HA), fused with one or more globular head domain sequence, each having at least 60% homology with a globular head domain consensus sequence of H1 subtype HA (H1 HA) or H5 subtype HA (H5 HA).
Abstract:
Immunogenic compositions comprising partially glycosylated viral glycoproteins for use as vaccines against viruses are provided. Vaccines formulated using mono-, di-, or tri-glycosylated viral surface glycoproteins and polypeptides provide potent and broad protection against viruses, even across strains. Pharmaceutical compositions comprising monoglycosylated hemagglutinin polypeptides and vaccines generated therefrom and methods of their use for prophylaxis or treatment of viral infections are disclosed. Methods and compositions are disclosed for influenza virus HA, NA and M2, RSV proteins F, G and SH, Dengue virus glycoproteins M or E, hepatitis C virus glycoprotein E1 or E2 and HIV glycoproteins gp120 and gp41.
Abstract:
The present disclosure relates to glycoproteins, particularly monoclonal antibodies, comprising a glycoengineered Fc region, wherein said Fc region comprises an optimized N-glycan having the structure of Sia2(α2-6)Gal2GlcNAc2Man3GlcNAc2. The glycoengineered Fc region binds FcγRIIA or FcγRIIIA with a greater affinity, relative to comparable monoclonal antibodies comprising the wild-type Fc region. The monoclonal antibodies of the invention are particularly useful in preventing, treating, or ameliorating one or more symptoms associated with a disease, disorder, or infection where an enhanced efficacy of effector cell function (e.g., ADCC) mediated by FcγR is desired, e.g., cancer, autoimmune, infectious disease, and in enhancing the therapeutic efficacy of therapeutic antibodies the effect of which is mediated by ADCC.