Abstract:
A power converter with an adjustable output voltage has an isolation DC/DC transformer, a primary side circuit connected to a primary coil of the isolation DC/DC transformer for transmitting an input AC power to the primary coil, and a secondary side circuit connected to a secondary coil of the isolation DC/DC transformer. The secondary side circuit includes a first output loop, a second output loop and a mode switch connected in the first output loop. When power consumption of a load is low, the mode switch is turned off to interrupt the first output loop so that the secondary side circuit generates a first output voltage with a low voltage level. When power consumption of a load is high, the mode switch is turned on and the secondary side circuit generates a second output voltage with a high voltage level. Without greatly increasing circuits, the power converter achieves wide-range voltage regulation.
Abstract:
A power supply device has a first output port, a second output port and a power delivery control module. The power delivery control module compares the first output voltage value and the second output voltage value to determine a reference voltage value, and determines the optimized voltage value according to the total output power value, the reference voltage value, and a rated output current of an AC/DC converting module. The power delivery control module controls the AC/DC converting module to convert the AC input voltage to an optimized voltage, so that when the first and second DC/DC converting modules receive the optimized voltage and convert it to the first and second output voltages respectively, the voltage drop is reduced, the conversion loss is reduced, and the conversion efficiency of the power supply device is improved.
Abstract:
The power supply device with multiple outputs includes two output ports, a power converting module with two power output ends, and two switching modules connected among the two power output ends and the two output ports. The output power from the two power output ends can be independently allocated to either one or two of the two second output ports. When one of the output ports requests for a demand power, the power supply device is able to determine which one or both of the power output ends to output power to the output port, reaching a better power allocation efficiency.
Abstract:
An integrated driving module includes an oscillator, a PWM unit, a soft start controller, a first driver, and a second driver. The oscillator is connected to a voltage input end and generates an oscillating signal. The PWM unit receives the oscillating signal and generates a first driving control signal and a second driving control signal that are respectively anti-phased. The first driver outputs a first driving output signal to a first output end according to the first driving control signal. The second driver outputs the second driving output signal to a second output end according to the second driving control signal. The integrated driving module only has four connection ends for external connection to provide the two anti-phase driving output signals, such that the circuit design and connection of the primary side of the transformer is greatly simplified. The design limitation and manufacturing cost can be both lowered.
Abstract:
A redundant power supply apparatus includes at least two power inlets, at least two power supply units, and a common component. Each power inlet is connected to an AC power source. Each power supply unit has an input side and the at least two power supply units having a common output side, each input side is connected to the power inlet, and each power supply unit is configured to convert the AC power source into a DC power source. The common component is connected at the common output side and configured to receive DC power sources. Accordingly, the redundant power supply apparatus is provided to improve reliability of redundant operations between multiple external power sources without using mechanical switches.
Abstract:
An irregularity detection device for a power switch determines if a temperature-dependent resistance on a current path of the power switch is abnormal according to if a voltage on the current path is greater than or equal to a configuration value when the power switch is turned on, and generates an irregularity alarm associated with the power switch based on the determination result.
Abstract:
A power supply has a power factor correction (PFC) circuit and a DC to DC conversion circuit. A DC to DC controller of the DC to DC conversion circuit acquires zero-crossing information and load information from the PFC circuit through a communication protocol, and performs a low-frequency compensation on a control command using a table-mapping means, thereby resolving the issues of higher controller complexity, changes of entire response characteristics and cost increase in conventional compensation technique.
Abstract:
A switching power supply with a resonant converter has an AC to DC converter and a DC to DC converter. The AC to DC converter converts an inputted AC power into a DC power. The DC to DC converter has a resonant converter determining a current operating state according to waveforms of a transformer voltage and a driving signal actually measured and further controlling a switching frequency of the resonant converter to approach or to be equal to a resonant frequency for operational efficiency enhancement. Accordingly, the failure to accurately calculate a resonant frequency beforehand can be solved and the issue of accurately keeping the switching frequency consistent with the resonant frequency can be tackled.
Abstract:
The power supply device with multiple outputs includes two output ports, a power converting module with two power output ends, and two switching modules connected among the two power output ends and the two output ports. The output power from the two power output ends can be independently allocated to either one or two of the two second output ports. When one of the output ports requests for a demand power, the power supply device is able to determine which one or both of the power output ends to output power to the output port, reaching a better power allocation efficiency.
Abstract:
A power supply device has a first output port, a second output port and a power delivery control module. The power delivery control module compares the first output voltage value and the second output voltage value to determine a reference voltage value, and determines the optimized voltage value according to the total output power value, the reference voltage value, and a rated output current of an AC/DC converting module. The power delivery control module controls the AC/DC converting module to convert the AC input voltage to an optimized voltage, so that when the first and second DC/DC converting modules receive the optimized voltage and convert it to the first and second output voltages respectively, the voltage drop is reduced, the conversion loss is reduced, and the conversion efficiency of the power supply device is improved.