Abstract:
A porous thin film battery is described herein. The battery includes a substrate, a porous thin film cathode formed on the substrate, an electrolyte layer formed on the porous thin film cathode and a porous thin film anode formed on the electrolyte layer. The porous thin film cathode includes a first set of pores initially filled with a quantity of a first polymer material and then the first polymer material is removed to form the first set of pores. The porous thin film anode includes a second set of pores initially filled with a third polymer material and then the third polymer material is removed to form the second set of pores. A method of forming the porous thin film battery is also described. A system for forming the porous thin film battery is also described.
Abstract:
A system and method of forming a silicon-hybrid anode material. The silicon-hybrid anode material including a microparticle mixture of a quantity of silicon microparticles and a quantity of metal microparticles intermixed with the quantity of silicon microparticles in a selected ratio. The microparticle mixture is formed in a silicon-hybrid anode material layer having a thickness of between about 2 and about 15 μm.
Abstract:
A system, method and apparatus for training a swing movement of a club includes storing a desired swing data in a measuring device, capturing a training swing data in the measuring device, comparing the training swing data to the desired swing data to determine a set of differential data, outputting a signal to a user corresponding to the set of differential data.
Abstract:
A system and method of forming a silicon-hybrid anode material. The silicon-hybrid anode material including a microparticle mixture of a quantity of silicon microparticles and a quantity of metal microparticles intermixed with the quantity of silicon microparticles in a selected ratio. The microparticle mixture is formed in a silicon-hybrid anode material layer having a thickness of between about 2 and about 15 μm.
Abstract:
A method of providing a sensor-based gaming system for an avatar to represent a player in a virtual environment includes wirelessly receiving a set of measurements describing attributes of the player. The method includes generating a player profile associated with the player and including an avatar depicting a virtual embodiment of the player in a virtual world. The method includes receiving sensor data from sensors. The sensor data describes a change in a real world position of the player. The method includes determining an estimate of a player movement. The method includes determining a difference between a screen position of the avatar in the virtual world and the real world position of the player in the real world. The method includes generating avatar image data representative of movement of the avatar corresponding to movement of the player.
Abstract:
A system and method of forming a thin film battery includes a substrate, a first current collector formed on the substrate, a cathode layer formed on a portion of the first current collector, a solid layer of electrolyte material formed on the cathode layer, a silicon-metal thin film anode layer formed on the solid layer of electrolyte material and a second current collector electrically coupled to the silicon-metal thin film anode layer. A method and a system for forming the thin film battery are also disclosed.
Abstract:
A system and method of forming a silicon-hybrid anode material. The silicon-hybrid anode material including a microparticle mixture of a quantity of silicon microparticles and a quantity of metal microparticles intermixed with the quantity of silicon microparticles in a selected ratio. The microparticle mixture is formed in a silicon-hybrid anode material layer having a thickness of between about 2 and about 15μm.