Abstract:
A method of generating data relative to the writing of a pattern by electronic radiation initially includes the provision of a pattern to be formed which form the work pattern with a single external envelope. The work pattern is broken down into a set of elementary outlines, each including a single external envelope. A set of insolation conditions is defined to model each elementary outline. An irradiated simulation pattern is calculated from the sets of insolation conditions associated with the sets of elementary outlines. The simulation pattern is compared with the pattern to be formed. If the simulation pattern is not representative of the pattern to be formed, shift vectors are calculated. The shift vectors are representative of different intervals existing between the two patterns. The external envelope of the pattern to be formed is modified from displacement vectors determined from the shift vectors. A new iteration is carried out.
Abstract:
A method of geometry corrections to properly transfer semiconductor designs on a wafer or a mask in nanometer scale processes is provided. In contrast with some prior art techniques, geometry corrections and possibly dose corrections are applied before fracturing. Unlike edge based corrections, where the edges are displaced in parallel, the displacements applied to generated geometry corrections do not preserve parallelism of the edges, which is specifically well suited for free form designs. A seed design is generated from the target design. Vertices connecting segments are placed along the seed design contour. Correction sites are placed on the segments. Displacement vectors are applied to the vertices. A simulated contour is generated and compared to the contour of the target design. The process is iterated until a match criteria between simulated and target design (or another stop criteria) is reached.
Abstract:
The invention discloses a computer implemented method of fracturing a surface into elementary features wherein the desired pattern has a rectilinear or curvilinear form. Depending upon the desired pattern, a first fracturing will be performed of a non-overlapping or an overlapping type. If the desired pattern is resolution critical, it will be advantageous to perform a second fracturing step using eRIFs. These eRIFs will be positioned either on the edges or on the medial axis or skeleton of the desired pattern. The invention further discloses method steps to define the position and shape of the elementary features used for the first and second fracturing steps.
Abstract:
The invention discloses a computer implemented method of fracturing a surface into elementary features wherein the desired pattern has a rectilinear or curvilinear form. Depending upon the desired pattern, a first fracturing will be performed of a non-overlapping or an overlapping type. If the desired pattern is resolution critical, it will be advantageous to perform a second fracturing step using eRIFs. These eRIFs will be positioned either on the edges or on the medial axis or skeleton of the desired pattern. The invention further discloses method steps to define the position and shape of the elementary features used for the first and second fracturing steps.