Abstract:
A heat-dissipation fan includes a rotary assembly and a plurality of rotary cylinders mounted on an outer surface of the rotary assembly to serve as cylindrical fan blades of the heat-dissipation fan. The rotary assembly includes a plurality of first electrical conducting units and a second electrical conducting unit. The rotary cylinders move along with the rotary assembly when the latter rotates and are correspondingly electrically connected to the first electrical conducting units to be rotatable about their respective centerlines.
Abstract:
A heat dissipation system with air sensation function includes a chassis, multiple fans, multiple air sensation units and an external control device connected to the fans. The chassis has an installation face for installing the fans thereon. The air sensation units are respectively disposed on the fans for detecting the air state of the corresponding fans to generate an air sensation signal. The external control device serves to receive the air sensation signal transmitted from the air sensation units and compare the data contained in the air sensation signal with preset data so as to control/adjust the rotational speed of the corresponding fans. Accordingly, a uniform airflow flows out of the fans to effectively lower the noise.
Abstract:
The present invention relates to a balance structure of a fan, which comprises a hub and a balance slider. The hub has a circumferential portion and a top portion. The circumferential portion has a plurality of blades. The top portion is provided with a groove having a latch portion. The balance slider has a receiving portion slidingly engaging with the latch portion such that the balance slider can be slidingly disposed in the groove and the balance slider can move to a balance position automatically during the rotation of the hub. In this way, the effect of automatic balance can be achieved.
Abstract:
A fan structure with non-circular circumference includes a frame, a first hub, a second hub, a transmission belt member, a first assembling member and a second assembling member. A first and a second base are provided in and protruded from a bottom of the frame. The first and the second hub are respectively mounted on the first and the second base, and a stator unit is provided between the first hub and the first base. The transmission belt member is fitted around side walls of the first and second hubs, and has a plurality of blades spaced on an outer surface thereof. The first and the second assembling member are correspondingly assembled to the tops of the first and the second hub. With the above arrangements, the fan structure can operate with largely reduced vibration and noise and can be manufactured at reduced material and production costs.
Abstract:
A heat dissipation system with air sensation function includes a chassis, multiple fans, multiple air sensation units and an external control device connected to the fans. The chassis has an installation face for installing the fans thereon. The air sensation units are respectively disposed on the fans for detecting the air state of the corresponding fans to generate an air sensation signal. The external control device serves to receive the air sensation signal transmitted from the air sensation units and compare the data contained in the air sensation signal with preset data so as to control/adjust the rotational speed of the corresponding fans. Accordingly, a uniform airflow flows out of the fans to effectively lower the noise.
Abstract:
A fan active noise self-lowering system includes a fan, a push assembly, at least one pickup unit and a digital signal processing unit. The pickup unit serves to capture the noise made by the fan to generate a noise input signal and transmit the noise input signal to the digital signal processing unit. The digital signal processing unit receives the noise input signal and processes the noise input signal to output a control signal for controlling the push winding assembly to operate so as to push the fan impeller of the fan to move up and down. Accordingly, the fan impeller will generate a reverse sonic wave to offset the noise.
Abstract:
A laser-welded joint structure between insulation frame and bearing cup of fan includes a base having a bearing cup and a stator having at least one insulation frame. The insulation frame includes a sleeve portion defining a bore axially extending therethrough. The sleeve portion is provided on an inner wall surface with at least one pressing section that radially projects into the bore to press a lower side against an upper end of the bearing cup and a bearing received therein. A portion of at least one lateral side of each pressing section that is in contact with the upper end of the bearing cup is melted by laser beam to form a laser-welded joint, so that the insulation frame and the bearing cup are integrally connected together at reduced manufacturing cost and have increased structural strength. A method of forming the laser-welded joint structure is also disclosed.
Abstract:
A series fan structure with multistage frame body includes a first main body, a second main body, a first frame and a second frame. The first main body has a first fan frame having a first opening and a second opening. The second main body is correspondingly serially connected to the first main body. The second main body has a second fan frame having a third opening and a fourth opening. The third opening corresponds to the second opening. The first frame is correspondingly serially connected to one side of the first fan frame with the first opening. The first frame and the first fan frame together define a first flow passage. The second frame is correspondingly serially connected to one side of the second fan frame with the fourth opening. The second frame and the second fan frame together define a second flow passage.
Abstract:
A flywheel energy storage fan includes a base seat, a fan electrical apparatus serving as a motor or a generator and a flywheel energy storage device having a flywheel rotary body. The base seat has a case section and a central column section disposed on the case section. The case section has a vacuumed chamber and a bearing cup disposed in the vacuumed chamber. The fan electrical apparatus has a rotational shaft. The rotational shaft is rotatably disposed in the central column section and the bearing cup. The flywheel rotary body is disposed on the rotational shaft in the vacuumed chamber. The flywheel energy storage fan is able to save electrical energy.
Abstract:
A vibration damper structure and a series fan thereof. The vibration damper structure includes a first support body, a second support body and an elastic member. The first support body has a first upper end and a first lower end. The second support body has a second upper end and a second lower end. The elastic member is disposed between the first and second support bodies. The elastic member has a first support end in contact with the first lower end and a second support end in contact with the second lower end. The vibration damper structure is applied to the series fan to greatly reduce the vibration of the series fan in operation.