Abstract:
An assembly of a liner and a flange for a vertical furnace for processing substrates is provided. The liner being configured to extend in the interior of a process tube of the vertical furnace, and the flange is configured to at least partially close a liner opening. The liner comprising a substantially cylindrical wall delimited by the liner opening at a lower end and closed at a higher end and being substantially closed for gases above the liner opening and defining an inner space. The flange comprising: an inlet opening configured to insert and remove a boat configured to carry substrates in the inner space of the liner; a gas inlet to provide a gas to the inner space. The assembly is constructed and arranged with a gas exhaust opening to remove gas from the inner space and a space between the liner and the low pressure tube.
Abstract:
A wafer boat for accommodating semiconductor wafers comprises two side rods and at least one back rod, the rods being vertically oriented and extending between a top member and a bottom member. The rods comprise vertically spaced recesses formed at corresponding heights, recesses at the same height defining a wafer accommodation for receiving and supporting a wafer in a substantially horizontal orientation, the recesses having an improved shape. The upwardly facing surfaces of the recesses comprise a first flat surface in an inward region of the recess which is horizontal or inclined upward in an outward direction of the recess and a second flat surface in an outer region of the recess which is inclined downward in an outward direction of the recess. The intersection of the first and second surface forming an edge for supporting the wafer. The recesses are easy to machine and prevent damage to the wafer.
Abstract:
An assembly of a liner and a support flange for a vertical furnace for processing wafers, wherein the support flange is configured for supporting the liner, at least two support members that are connected to the cylindrical wall, each having a downwardly directed supporting surface, wherein each downwardly directed supporting surface is positioned radially outwardly from the inner cylindrical surface, wherein the support flange and/or the liner are configured such that, when the liner is placed on the support flange, the downwardly directed supporting surfaces are in contact with an upper surface of the support flange and support the liner, and wherein at least the part of the lower end surface of the liner that bounds the inner cylindrical surface is spaced apart from the upper surface of the support flange.
Abstract:
A purge nozzle assembly comprising a purge nozzle body including an inlet opening and an outlet opening. The outlet opening opens into a purge nozzle contact surface. Additionally, the purge nozzle assembly includes a mounting body for connecting the purge nozzle assembly to an external frame member. A mechanical coupling mechanism moveably couples the purge nozzle body with the mounting body and is configured to allow tilting of the purge nozzle body relative to the mounting body as well as to allow a substantial lateral movement of the purge nozzle body relative to the mounting body, wherein the lateral movement has a movement component which is substantially parallel to the purge nozzle contact surface.
Abstract:
The disclosure relates to a substrate processing apparatus for processing a plurality of substrates. The apparatus comprising a reactor mounted in the apparatus and configured for processing substrates and a reactor mover for moving the reactor for maintenance. The reactor mover is constructed and arranged with a lift to move the reactor to a lower height to allow for access to the reactor by a maintenance worker.
Abstract:
An assembly of a liner and a support flange for a vertical furnace for processing wafers, wherein the support flange is configured for supporting the liner, at least two support members that are connected to the cylindrical wall, each having a downwardly directed supporting surface, wherein each downwardly directed supporting surface is positioned radially outwardly from the inner cylindrical surface, wherein the support flange and/or the liner are configured such that, when the liner is placed on the support flange, the downwardly directed supporting surfaces are in contact with an upper surface of the support flange and support the liner, and wherein at least the part of the lower end surface of the liner that bounds the inner cylindrical surface is spaced apart from the upper surface of the support flange.
Abstract:
An injector configured to be placed in a process chamber of a batch furnace assembly for injecting a gas into said process chamber. The injector has an elongated, tubular housing enclosing an injection chamber. The housing has a gas inlet opening for supplying a gas from a gas source to the injection chamber, at least one gas supply opening for supplying the gas from the injection chamber into the process chamber, and a circumferential wall extending in a longitudinal direction of the housing. The circumferential wall comprises a first lateral wall half and a second lateral wall half. Both lateral wall halves substantially span a length of the housing in the longitudinal direction. The first and second lateral wall halves are fastened to each other by means of mechanical fastening.
Abstract:
An injector configured to be placed in a process chamber of a batch furnace assembly for injecting a gas into said process chamber. The injector has an elongated, tubular housing enclosing an injection chamber. The housing has a gas inlet opening for supplying a gas from a gas source to the injection chamber, at least one gas supply opening for supplying the gas from the injection chamber into the process chamber, and a circumferential wall extending in a longitudinal direction of the housing. The circumferential wall comprises a first lateral wall half and a second lateral wall half. Both lateral wall halves substantially span a length of the housing in the longitudinal direction. The first and second lateral wall halves are fastened to each other by means of mechanical fastening.
Abstract:
An assembly of a liner and a flange for a vertical furnace for processing substrates is provided. The liner being configured to extend in the interior of a process tube of the vertical furnace, and the flange is configured to at least partially close a liner opening. The liner comprising a substantially cylindrical wall delimited by the liner opening at a lower end and closed at a higher end and being substantially closed for gases above the liner opening and defining an inner space. The flange comprising:an inlet opening configured to insert and remove a boat configured to carry substrates in the inner space of the liner;a gas inlet to provide a gas to the inner space. The assembly is constructed and arranged with a gas exhaust opening to remove gas from the inner space and a space between the liner and the low pressure tube.