Methods of aligning a diffractive optical system and diffracting beams, diffractive optical element and apparatus

    公开(公告)号:US10983361B2

    公开(公告)日:2021-04-20

    申请号:US15898394

    申请日:2018-02-16

    Abstract: A method of aligning a diffractive optical system, to be operated with an operating beam, comprises: aligning (558) the diffractive optical system using an alignment beam having a different wavelength range from the operating beam and using a diffractive optical element optimized (552) to diffract the alignment beam and the operating beam in the same (or a predetermined) direction. In an example, the alignment beam comprises infra-red (IR) radiation and the operating beam comprises soft X-ray (SXR) radiation. The diffractive optical element is optimized by providing it with a first periodic structure with a first pitch (pIR) and a second periodic structure with a second pitch (pSXR). After alignment, the vacuum system is pumped down (562) and in operation the SXR operating beam is generated (564) by a high harmonic generation (HHG) optical source pumped by the IR alignment beam’ optical source.

    Determining an edge roughness parameter of a periodic structure

    公开(公告)号:US10725387B2

    公开(公告)日:2020-07-28

    申请号:US16028917

    申请日:2018-07-06

    Abstract: In a method of determining an edge roughness parameter of a periodic structure, the periodic structure is illuminated (602) in an inspection apparatus. The illumination radiation beam may comprise radiation with a wavelength in the range 1 nm to 100 nm. A scattering signal (604) is obtained from a radiation beam scattered from the periodic structure. The scattering signal comprises a scattering intensity signal that is obtained by detecting an image of a far-field diffraction pattern in the inspection apparatus. An edge roughness parameter, such as Lined Edge Roughness and/or Line Width Roughness is determined (606) based on a distribution of the scattering intensity signal around a non-specular diffraction order. This may be done for example using a peak broadening model.

    Illumination source for an inspection apparatus, inspection apparatus and inspection method

    公开(公告)号:US10451559B2

    公开(公告)日:2019-10-22

    申请号:US16102178

    申请日:2018-08-13

    Abstract: Disclosed is an inspection apparatus and associated method for measuring a target structure on a substrate. The inspection apparatus comprises an illumination source for generating measurement radiation; an optical arrangement for focusing the measurement radiation onto said target structure; and a compensatory optical device. The compensatory optical device may comprise an SLM operable to spatially modulate the wavefront of the measurement radiation so as to compensate for a non-uniform manufacturing defect in said optical arrangement. In alternative embodiments, the compensatory optical device may be located in the beam of measurement radiation, or in the beam of pump radiation used to generate high harmonic radiation in a HHG source. Where located in the beam of pump radiation, the compensatory optical device may be used to correct pointing errors, or impart a desired profile or varying illumination pattern in a beam of the measurement radiation.

Patent Agency Ranking