Abstract:
In one aspect, a computer readable memory medium comprising program instructions for graphically developing a connectivity driver is provided. The computer readable memory medium is a non-transitory medium. The program instructions are executable by a processor to generate a purchase order for a laboratory item, transmit the purchase order to a remote computer in order to communicate the purchase order to a vendor, receive an advance shipping notice generated in response to the purchase order, receive item information stored in an RFID tag of a tagged item received at the delivery location, and check the item information against the advance shipping notice in order to verify that the tagged item is the same as the ordered laboratory item. The purchase order specifies a delivery location.
Abstract:
Systems, apparatus, and related methods for evaluating biological sample integrity are disclosed herein. An example method includes scanning a sample container having a sample disposed therein to generate signal data including a first signal portion and a second signal portion. The example method includes detecting if the sample container includes a label attached to a surface of the sample container based on the second signal portion. If the sample container includes a label, the example method includes applying an adjustment factor to the second signal portion to create adjusted signal data. The example method includes determining a property of the sample based on one or more of the first signal portion or the adjusted signal data.
Abstract:
In one aspect, a computer readable memory medium comprising program instructions for graphically developing a connectivity driver is provided. The computer readable memory medium is a non-transitory medium. The program instructions are executable by a processor to generate a purchase order for a laboratory item, transmit the purchase order to a remote computer in order to communicate the purchase order to a vendor, receive an advance shipping notice generated in response to the purchase order, receive item information stored in an RFID tag of a tagged item received at the delivery location, and check the item information against the advance shipping notice in order to verify that the tagged item is the same as the ordered laboratory item. The purchase order specifies a delivery location.
Abstract:
A laboratory automation system that is capable of carrying out clinical chemistry assays, immunoassays, amplification of nucleic acid assays, and any combination of the foregoing, said laboratory automation system employing at least one of micro-well plates and deep multi-well plates as reaction vessels. The use of micro-well plates as reaction vessels enables the laboratory automation system to assume a variety of arrangements, i.e., the laboratory automation system can comprise a variety of functional modules that can be arranged in various ways. In order to effectively carry out immunoassays by means of micro-well plates, a technique known as inverse magnetic particle processing can be used to transfer the product(s) of immunoassays from one micro-well of a micro-well plate to another.
Abstract:
A system for managing the inventory of reagents for a laboratory automation system. The system for managing the inventory of reagents comprises a controller, software for the controller, and a refrigerator capable of refrigerating reagents, detecting the presence or absence of reagents in the refrigerator, and detecting the location of reagents in the refrigerator. The system for managing the inventory of reagents is connected to a laboratory automation system. The laboratory automation system comprises at least one clinical analyzer. A typical system for managing inventories of reagents includes an operator interface for the loading of boxes of reagents and other supplies, radio frequency identification system for identification of inventory and tracking, robotic mechanisms for loading containers onto the track system and removing containers from the track system, de-capping equipment, refrigeration equipment, and information technology connections to laboratory analyzers and vendors.
Abstract:
A system for managing bulk liquids for an automated clinical analyzer. The system comprises (a) at least one local reservoir for storing a bulk liquid for impending use, (b) at least one container for holding a bulk liquid before the liquid is transferred to a local reservoir, and (c) a controller for monitoring the level of a bulk liquid in a local reservoir. The local reservoir for storing a bulk liquid for impending use can be a trough. The use of troughs for storing a reagent, a diluent, or some other treating agent for impending use enables an aspirating/dispensing device having a plurality of pipettes to aspirate and dispense the reagent, diluent, or other treating agent at a high rate of throughput. The controller can monitor the level of a liquid in (a) a local reservoir for storing a bulk liquid for imminent use and the level of liquid in a (b) container for holding a bulk liquid before the liquid is transferred to a local reservoir. In the laboratory automation system described herein, the container for holding a bulk liquid before the liquid is transferred to a local reservoir can be a bottle. Other desirable features in the system include, but are not limited to, pump(s), valves, liquid level sensors.
Abstract:
In one aspect, a computer readable memory medium comprising program instructions for graphically developing a connectivity driver is provided. The computer readable memory medium is a non-transitory medium. The program instructions are executable by a processor to generate a purchase order for a laboratory item, transmit the purchase order to a remote computer in order to communicate the purchase order to a vendor, receive an advance shipping notice generated in response to the purchase order, receive item information stored in an RFID tag of a tagged item received at the delivery location, and check the item information against the advance shipping notice in order to verify that the tagged item is the same as the ordered laboratory item. The purchase order specifies a delivery location.
Abstract:
A centrifuge to which sample tubes can be introduced while the centrifuge is in motion. The centrifuge comprises a carousel having an upper portion and a lower portion. The upper portion of the carousel has a plurality of positions for sample tubes for a centrifugation operation, a plurality of drive mechanisms attached to the upper portion of the carousel, a movable element mounted upon each drive mechanism, the movable element capable of traversing the length of the drive mechanism when the drive mechanism is actuated, a sample tube-holding assembly comprising a sample tube holder and a bearing attached to each movable element, and at least one balancing element capable of contributing to a force vector that cancels an imbalance vector generated by rotation of the centrifuge.
Abstract:
Disclosed herein are instruments, systems and methods for performing automated integrated analysis of both clinical chemistry assay and immunoassay tests on a sample. The system includes a common process subsystem module; a clinical chemistry analyzer module; an immunoassay analyzer module; and a plurality of additional modules. The common process subsystem module is configured to position one or more reaction vessels containing aliquots of the sample for analysis by the clinical chemistry analyzer module, the immunochemistry analyzer module or both analyzer modules. The included immunochemistry analyzer module of the instrument and system is configured to perform multiplex FRET analysis on homogeneous solutions, thereby increasing the flexibility, throughput and robustness of the resultant instrument and systems.
Abstract:
In one aspect, a computer readable memory medium comprising program instructions for graphically developing a connectivity driver is provided. The computer readable memory medium is a non-transitory medium. The program instructions are executable by a processor to generate a purchase order for a laboratory item, transmit the purchase order to a remote computer in order to communicate the purchase order to a vendor, receive an advance shipping notice generated in response to the purchase order, receive item information stored in an RFID tag of a tagged item received at the delivery location, and check the item information against the advance shipping notice in order to verify that the tagged item is the same as the ordered laboratory item. The purchase order specifies a delivery location.