Abstract:
This disclosure is related to systems and methods for rapid determination of microorganism growth and antimicrobial agent susceptibility and/or resistance.
Abstract:
The present invention relates to moving microorganisms to a surface, where they are grown in the presence and absence of antimicrobials, and by monitoring the growth of the microorganisms over time in the two conditions, their susceptibility to the antimicrobials can be determined. The microorganisms can be moved to the surface through electrophoresis, centrifugation or filtration. When the movement involves electrophoresis, the presence of oxidizing and reducing reagents lowers the voltage at which electrophoretic force can be generated and allows a broader range of means by which the target can be detected. Monitoring can comprise optical detection, and most conveniently includes the detection of individual microorganisms. The microorganisms can be stained in order to give information about their response to antimicrobials.
Abstract:
Methods and systems for purifying one or more microbial cells and/or viruses from a biological sample are provided. The biological sample is added to a well disposed in a medium. A potential is applied across the medium to cause the contaminants to enter one or more walls of the well, and retain the microbial cells and/or viruses in the well. The microbial cells and/or viruses can be removed from the well, and optionally adhered or fixed to a surface, or detected. In one embodiment, the microbial cells and/or viruses are retained in the well by embedding in the medium. The medium including the embedded microbial cells and/or viruses may be excised or otherwise removed and transferred to a glass slide or other solid surface. In some examples, a biological sample containing contaminants and one or more microbial cells is introduced to a well disposed in a porous filter medium, wherein the porous filter medium includes pores smaller than the one or more microbial cells, thereby preventing the one or more microbial cells from entering the porous filter medium.
Abstract:
The present disclosure is related to methods for immobilizing microorganisms to produce an immobilized microorganism sample for detection with a detection system. Compositions for immobilizing microorganisms are also disclosed.
Abstract:
The present invention relates to moving microorganisms to a surface, where they are grown in the presence and absence of antimicrobials, and by monitoring the growth of the microorganisms over time in the two conditions, their susceptibility to the antimicrobials can be determined. The microorganisms can be moved to the surface through electrophoresis, centrifugation or filtration. When the movement involves electrophoresis, the presence of oxidizing and reducing reagents lowers the voltage at which electrophoretic force can be generated and allows a broader range of means by which the target can be detected. Monitoring can comprise optical detection, and most conveniently includes the detection of individual microorganisms. The microorganisms can be stained in order to give information about their response to antimicrobials.
Abstract:
Disclosed are optical interrogation apparatus that can produce lens-free images using an optoelectronic sensor array to generate a holographic image of sample objects, such as microorganisms in a sample. Also disclosed are methods of detecting and/or identifying microorganisms in a biological sample, such as microorganisms present in low levels. Also disclosed are methods of using systems to detect microorganisms in a biological sample, such as microorganisms present in low levels. In addition or as an alternative, the methods of using systems may identify microorganisms present in a sample and/or determine antimicrobial susceptibility of such microorganisms.
Abstract:
The present invention relates to moving microorganisms to a surface, where they are grown in the presence and absence of antimicrobials, and by monitoring the growth of the microorganisms over time in the two conditions, their susceptibility to the antimicrobials can be determined. The microorganisms can be moved to the surface through electrophoresis, centrifugation or filtration. When the movement involves electrophoresis, the presence of oxidizing and reducing reagents lowers the voltage at which electrophoretic force can be generated and allows a broader range of means by which the target can be detected. Monitoring can comprise optical detection, and most conveniently includes the detection of individual microorganisms. The microorganisms can be stained in order to give information about their response to antimicrobials.
Abstract:
Systems and methods for automated biological sample preparation for use in rapid identification and antimicrobial susceptibility testing of microorganisms, such as bacteria and fungi, are provided.
Abstract:
A system for automated microorganism identification and antibiotic susceptibility testing comprising a reagent cartridge, a reagent stage, a cassette, a cassette, stage, a pipettor assembly, an optical detection system, and a controller is disclosed. The system is designed to dynamically adjust motor idle torque to control heat load and employs a fast focus process for determining the true focus position of an individual microorganism. The system also may quantify the relative abundance of viable microorganisms in a sample using dynamic dilution, and facilitate growth of microorganisms in customized media for rapid, accurate antimicrobial susceptibility testing.
Abstract:
A system for automated microorganism identification and antibiotic susceptibility testing comprising a reagent cartridge, a reagent stage, a cassette, a cassette, stage, a pipettor assembly, an optical detection system, and a controller is disclosed. The system is designed to dynamically adjust motor idle torque to control heat load and employs a fast focus process for determining the true focus position of an individual microorganism. The system also may quantify the relative abundance of viable microorganisms in a sample using dynamic dilution, and facilitate growth of microorganisms in customized media for rapid, accurate antimicrobial susceptibility testing. Automated quality control test components and methods of their use are also disclosed.