Abstract:
Disclosed is a method for monitoring the wavelength of a tunable laser device of user by local OLT. The method is applied to a wavelength division multiplexing passive optical network framework. The framework comprises an ONU, a first athermal array waveguide grating, a transmission optical fiber, a second athermal array waveguide grating and the OLT, which are sequentially connected. ONU comprises tunable wavelength optical transmitters. The method comprises: starting handshaking is carried out between the OLT and the ONU; and the OLT carries out wavelength drifting monitoring during operation of the ONU. Wavelength adjustment can be carried out on the multi-channel tunable laser device in an external auxiliary monitoring environment, thus channel wavelengths of the multi-channel tunable laser device can be accurately controlled, and the requirement for calibration accuracy of channels of the tunable laser device at the ONU is greatly reduced.
Abstract:
An external-cavity tunable laser with a flexible wavelength grid tuning function comprises a resonant cavity, collimating lenses, an optical isolator, and an output optical fiber. The resonant cavity comprises a semiconductor gain chip, a beam expander collimating lens, a combined liquid crystal tunable filter assembly, and a reflecting mirror. A current injected to the semiconductor gain chip is converted to broadband spontaneously radiating photons through electrical-to-optical conversion, and the photons are spread along a waveguide toward two sides. A part of photons with special frequencies go back and forth multiple times in the resonant cavity to form a laser after a threshold condition is met. The laser is collimated by the collimating lens, passes through the optical isolator, is coupled by the collimating lens, and enters the output optical fiber.
Abstract:
The present invention relates to an external cavity tunable laser and a cavity mode locking method thereof. In an embodiment, an external cavity tunable laser comprises a semiconductor amplifier having a partial reflective film provided on one end and an anti-reflective film provided on the other end, a cavity mirror provided at the anti-reflective end to define an external cavity therebetween, a large-range phasing assembly and a quick phasing assembly provided to adjust the optical length of the external cavity independently, an optical power detector provided to detect the optical power of the light output from the semiconductor amplifier, and a control unit in communication with the optical power detector, the large-range phasing assembly, and the quick phasing assembly.
Abstract:
A performance testing device for a multi-channel tunable laser, comprising a collimating and coupling lens, a first beam splitter, a power testing unit, a side-mode suppression ratio testing unit, a wavelength testing unit and a control and drive unit, the power testing unit being positioned in a reflection path of the first beam splitter, the wavelength testing unit being positioned in a transmission path of the first beam splitter, the side-mode suppression ratio testing unit being positioned in a reflection path of the second beam splitter, the control and drive unit being in a control connection with the power testing unit, the side-mode suppression ratio testing unit and the wavelength testing unit. The performance testing device has a simple structure, a low cost, and is convenient to use
Abstract:
A performance testing device for a multi-channel tunable laser, comprising a collimating and coupling lens, a first beam splitter, a power testing unit, a side-mode suppression ratio testing unit, a wavelength testing unit and a control and drive unit, the power testing unit being positioned in a reflection path of the first beam splitter, the wavelength testing unit being positioned in a transmission path of the first beam splitter, the side-mode suppression ratio testing unit being positioned in a reflection path of the second beam splitter, the control and drive unit being in a control connection with the power testing unit, the side-mode suppression ratio testing unit and the wavelength testing unit. The performance testing device has a simple structure, a low cost, and is convenient to use.
Abstract:
An arrayed waveguide grating based hybrid integrated laser has an adjustable external cavity. The waveguide includes a semiconductor gain die and an optical waveguide chip. The optical waveguide chip includes an arrayed waveguide grating and an arrayed waveguide reflection-controllable component. A resonant cavity is formed by the output end reflection-controllable arrayed waveguide grating chip and the semiconductor gain die. An output wavelength of the laser can be adjusted by changing a driving condition of the reflection-controllable component. The output wavelength is determined by a center wavelength of each channel of the arrayed waveguide grating.
Abstract:
A Raman pump laser control apparatus comprises a wavelength division multiplexer, a tap coupler, a photoelectric detector, an analog amplification processing circuit, an analog-to-digital converter, a fast Raman pump control unit, an digital-analog converter, and a Raman pump laser. The fast Raman pump control unit, after having known anticipated output light power of the Raman pump laser, based on a direct relationship between a current anticipated output light power of the Raman pump laser and input digital quantity that is needed by the digital-analog converter, uses a feedforward control mechanism so that actual output light power of the Raman pump laser fastly approximates the anticipated output light power thereof, and then synchronously combines with a feedback control mechanism so that the actual output light power of the Raman pump laser is precisely locked on the anticipated output light power, thereby achieving fast and precise control of the Raman pump laser.
Abstract:
A wavelength-tunable external cavity laser comprises a semiconductor optical amplifier chip and a laser external cavity, the laser external cavity comprising a grid filter, a phase adjustor and a silicon-based micro-ring chip, the grid filter and the silicon-based micro-ring chip constituting a wavelength-tunable optical filter which implements wavelength tuning by spectral tuning of the grid filter and/or the silicon-based micro-ring chip. A micro-ring filter in the silicon-based micro-ring chip of the tunable external-cavity laser is manufactured by adopting a mature silicon light technology, which can greatly reduce a manufacturing difficulty of the adjustable filter, and reduce the manufacturing cost of a device. An existing external-cavity adjustable technology platform may be used for smooth transition, so as to improve the degree of integration of this type of device and simplify a preparation process.
Abstract:
Disclosed is a method for monitoring the wavelength of a tunable laser device of user by local OLT. The method is applied to a wavelength division multiplexing passive optical network framework. The framework comprises an ONU, a first athermal array waveguide grating, a transmission optical fiber, a second athermal array waveguide grating and the OLT, which are sequentially connected. ONU comprises tunable wavelength optical transmitters. The method comprises: starting handshaking is carried out between the OLT and the ONU; and the OLT carries out wavelength drifting monitoring during operation of the ONU. Wavelength adjustment can be carried out on the multi-channel tunable laser device in an external auxiliary monitoring environment, thus channel wavelengths of the multi-channel tunable laser device can be accurately controlled, and the requirement for calibration accuracy of channels of the tunable laser device at the ONU is greatly reduced.
Abstract:
The present invention relates to an external cavity tunable laser and a cavity mode locking method thereof. In an embodiment, an external cavity tunable laser comprises a semiconductor amplifier having a partial reflective film provided on one end and an anti-reflective film provided on the other end, a cavity mirror provided at the anti-reflective end to define an external cavity therebetween, a large-range phasing assembly and a quick phasing assembly provided to adjust the optical length of the external cavity independently, an optical power detector provided to detect the optical power of the light output from the semiconductor amplifier, and a control unit in communication with the optical power detector, the large-range phasing assembly, and the quick phasing assembly.