Abstract:
A Raman pump laser control apparatus comprises a wavelength division multiplexer, a tap coupler, a photoelectric detector, an analog amplification processing circuit, an analog-to-digital converter, a fast Raman pump control unit, an digital-analog converter, and a Raman pump laser. The fast Raman pump control unit, after having known anticipated output light power of the Raman pump laser, based on a direct relationship between a current anticipated output light power of the Raman pump laser and input digital quantity that is needed by the digital-analog converter, uses a feedforward control mechanism so that actual output light power of the Raman pump laser fastly approximates the anticipated output light power thereof, and then synchronously combines with a feedback control mechanism so that the actual output light power of the Raman pump laser is precisely locked on the anticipated output light power, thereby achieving fast and precise control of the Raman pump laser.
Abstract:
Provided are a control method and system for a cascade hybrid amplifier, in which respective hybrid amplifiers in the cascade hybrid amplifier simultaneously start to implement a pump-starting process comprising: when the hybrid amplifier receives a request to start pumping, determining whether conditions are satisfied, if yes, determining stability of power of an input light of a Raman, starting pumping of an EDFA so that the EDFA enters into an APC operation mode; starting pumping of the Raman, and calculating a gain deviation according to the calculated input light powers before and after pump-starting of the Raman when no reflection alarm exists; and adjusting gain of the Raman according to the gain deviation, and switching to an AGC (automatic gain control) operation mode after the adjustment; and switching the EDFA to the AGC operation mode.
Abstract:
A hybrid fiber amplifier and method of adjusting gain and gain slope of thereof. The hybrid fiber amplifier comprises: RFA and EDFA that does not comprise variable optical attenuator. The RFA comprises pump signal combiner, pump laser group, out-of-band narrow-band filter, and photodetector. The EDFA comprises input coupler, erbium-doped fiber, output coupler, input photodetector, and output photodetector that are connected in sequence. The hybrid fiber amplifier also comprises control module that coordinates and controls EDFA and/or RFA to adjust gain and/or the gain slope based on desired amplification requirements. The EDFA and/or RFA can be coordinated and controlled by using the control module to achieve desired amplification effect. In addition, the EDFA does not comprise the variable optical attenuator, which avoids problems caused by the variable optical attenuator. The hybrid fiber amplifier and method of adjusting gain and gain slope thereof are applicable to technical field of optical communications.
Abstract:
A method for realizing precise gain control for a hybrid fibre amplifier, and a hybrid fibre amplifier, in which by an erbium-doped fibre amplifier firstly outputting a constant power, a comparable source signal optical power is provided for a raman fibre amplifier of a next stage. A feedback for the gain control may be formed by comparing a source signal optical power calculated after starting pumping of the Raman fibre amplifier and a source signal optical power detected after pumping stops, thereby greatly improving gain control precision of the Raman fibre amplifier. Moreover, the erbium-doped fibre amplifier parts of all the hybrid fibre amplifiers may simultaneously output a constant optical power, and the Raman amplifier parts of all the hybrid fibre amplifiers may simultaneously start calibration, so that the time for starting operation of the entire system may be improved greatly.
Abstract:
Provided are a control method and system for a cascade hybrid amplifier, in which respective hybrid amplifiers in the cascade hybrid amplifier simultaneously start to implement a pump-starting process comprising: when the hybrid amplifier receives a request to start pumping, determining whether conditions are satisfied, if yes, determining stability of power of an input light of a Raman, starting pumping of an EDFA so that the EDFA enters into an APC operation mode; starting pumping of the Raman, and calculating a gain deviation according to the calculated input light powers before and after pump-starting of the Raman when no reflection alarm exists; and adjusting gain of the Raman according to the gain deviation, and switching to an AGC (automatic gain control) operation mode after the adjustment; and switching the EDFA to the AGC operation mode.
Abstract:
A method for realizing precise gain control for a hybrid fibre amplifier, and a hybrid fibre amplifier, in which by an erbium-doped fibre amplifier firstly outputting a constant power, a comparable source signal optical power is provided for a raman fibre amplifier of a next stage. A feedback for the gain control may be formed by comparing a source signal optical power calculated after starting pumping of the Raman fibre amplifier and a source signal optical power detected after pumping stops, thereby greatly improving gain control precision of the Raman fibre amplifier. Moreover, the erbium-doped fibre amplifier parts of all the hybrid fibre amplifiers may simultaneously output a constant optical power, and the Raman amplifier parts of all the hybrid fibre amplifiers may simultaneously start calibration, so that the time for starting operation of the entire system may be improved greatly.
Abstract:
A Raman pump laser control apparatus comprises a wavelength division multiplexer, a tap coupler, a photoelectric detector, an analogue amplification processing circuit, an analogue-to-digital converter, a fast Raman pump control unit, an digital-analog converter, and a Raman pump laser. The fast Raman pump control unit, after having known anticipated output light power of the Raman pump laser, based on a direct relationship between a current anticipated output light power of the Raman pump laser and input digital quantity that is needed by the digital-analog converter, uses a feedforward control mechanism so that actual output light power of the Raman pump laser fastly approximates the anticipated output light power thereof, and then synchronously combines with a feedback control mechanism so that the actual output light power of the Raman pump laser is precisely locked on the anticipated output light power, thereby achieving fast and precise control of the Raman pump laser.
Abstract:
A hybrid fiber amplifier and method of adjusting gain and gain slope of thereof. The hybrid fiber amplifier comprises: RFA and EDFA that does not comprise variable optical attenuator. The RFA comprises pump signal combiner, pump laser group, out-of-band narrow-band filter, and photodetector. The EDFA comprises input coupler, erbium-doped fiber, output coupler, input photodetector, and output photodetector that are connected in sequence. The hybrid fiber amplifier also comprises control module that coordinates and controls EDFA and/or RFA to adjust gain and/or the gain slope based on desired amplification requirements. The EDFA and/or RFA can be coordinated and controlled by using the control module to achieve desired amplification effect. In addition, the EDFA does not comprise the variable optical attenuator, which avoids problems caused by the variable optical attenuator. The hybrid fiber amplifier and method of adjusting gain and gain slope thereof are applicable to technical field of optical communications.