Abstract:
A substrate includes a first dielectric layer having a first surface and a second dielectric layer having a first surface disposed adjacent to the first surface of the first dielectric layer. The substrate further includes a first conductive via disposed in the first dielectric layer and having a first end adjacent to the first surface of the first dielectric layer and a second end opposite the first end. The substrate further includes a second conductive via disposed in the second dielectric layer and having a first end adjacent to the first surface of the second dielectric layer. A width of the first end of the first conductive via is smaller than a width of the second end of the first conductive via, and a width of the first end of the second conductive via is smaller than the width of the first end of the first conductive via.
Abstract:
A semiconductor device package includes a first conductive structure, a stress buffering layer and a second conductive structure. The first conductive structure includes a substrate, at least one first electronic component embedded in the substrate, and a first circuit layer disposed on the substrate and electrically connected to the first electronic component. The first circuit layer includes a conductive wiring pattern. The stress buffering layer is disposed on the substrate. The conductive wiring pattern of the first circuit layer extends through the stress buffering layer. The second conductive structure is disposed on the stress buffering layer and the first circuit layer.
Abstract:
A semiconductor device package and method for manufacturing the same are provided. The semiconductor device package includes a first conductive structure, a stress buffering layer and a second conductive structure. The first conductive structure includes a substrate, and a first circuit layer disposed on the substrate. The first circuit layer includes a conductive wiring pattern, and the conductive wiring pattern is an uppermost conductive pattern of the first circuit layer. The stress buffering structure is disposed on the first conductive structure. The second conductive structure is disposed over the stress buffering structure. The conductive wiring pattern extends through the stress buffering structure and electrically connected to the second conductive structure, and an upper surface of the conductive wiring pattern is substantially coplanar with an upper surface of the stress buffering structure.
Abstract:
A semiconductor substrate includes: 1) a first dielectric structure having a first surface and a second surface opposite the first surface; 2) a second dielectric structure having a third surface and a fourth surface opposite the third surface, wherein the fourth surface faces the first surface, the second dielectric structure defining a through hole extending from the third surface to the fourth surface, wherein a cavity is defined by the through hole and the first dielectric structure; 3) a first patterned conductive layer, disposed on the first surface of the first dielectric structure; and 4) a second patterned conductive layer, disposed on the second surface of the first dielectric structure and including at least one conductive trace. The first dielectric structure defines at least one opening to expose a portion of the second patterned conductive layer.
Abstract:
The present disclosure relates to a semiconductor device substrate and a method for making the same. The semiconductor device substrate includes a first dielectric layer, a second dielectric layer and an electronic component. The first dielectric layer includes a body portion, and a wall portion protruded from a first surface of the body portion. The wall portion has an end. The second dielectric layer has a first surface and an opposing second surface. The first surface of the second dielectric layer is adjacent to the first surface of the body portion. The second dielectric layer surrounds the wall portion. The end of the wall portion extends beyond the second surface of the second dielectric layer. The electronic component includes a first electrical contact and a second electrical contact. At least a part of the electronic component is surrounded by the wall portion.
Abstract:
The present disclosure relates to a semiconductor substrate, a semiconductor package structure, and methods for making the same. A method includes providing a substrate and a carrier layer. The substrate includes a first patterned metal layer, a second patterned metal layer spaced from the first patterned metal layer, and a dielectric layer disposed between the first patterned metal layer and the second patterned metal layer. The dielectric layer covers the second patterned metal layer. The dielectric layer defines first openings exposing the second patterned metal layer, and further defines a via opening extending from the first patterned metal layer to the second patterned metal layer. A conductive material is disposed in the via and electrically connects the first patterned metal layer to the second patterned metal layer. The carrier layer defines second openings exposing the second patterned metal layer.
Abstract:
A package substrate and manufacturing method thereof are provided. The package substrate includes a substrate and an electronic component. The substrate includes a cavity. The electronic component is disposed in the cavity. The electronic component includes a first region and a second region, and an optical recognition rate of the first region is distinct from that of the second region.
Abstract:
A semiconductor device package and a method for manufacturing the same are provided. The semiconductor device package includes a circuit layer and an antenna module. The circuit layer has a first surface, a second surface opposite to the first surface and a lateral surface. The lateral surface extends between the first surface and the second surface. The circuit layer has an interconnection structure. The antenna module has an antenna pattern layer and is disposed on the first surface of the circuit layer. The lateral surface of the circuit layer is substantially coplanar with a lateral surface of the antenna module.
Abstract:
The present disclosure provides a semiconductor substrate, including a first patterned conductive layer, a dielectric structure on the first patterned conductive layer, wherein the dielectric structure having a side surface, a second patterned conductive layer on the dielectric structure and extending on the side surface, and a third patterned conductive layer on the second patterned conductive layer and extending on the side surface. The present disclosure provides a semiconductor package including the semiconductor substrate. A method for manufacturing the semiconductor substrate and the semiconductor package is also provided.
Abstract:
A substrate includes a dielectric layer having a first surface and a second surface opposite to the first surface, a first circuit layer and at least one second conductive element. The first circuit layer is disposed adjacent to the first surface of the dielectric layer, and includes at least one trace and at least one first conductive element connected to the trace. The first conductive element does not extend through the dielectric layer. The second conductive element extends through the dielectric layer. An area of an upper surface of the second conductive element is substantially equal to an area of an upper surface of the first conductive element.