Abstract:
The disclosure is directed to modeling calls in real time, with the goal of helping users, e.g., a sales representative and/or their managers, improve and/or guide the outcome of the calls. The embodiments generate real-time probabilities for possible outcomes of the conversation, as well as highlight specific on-call patterns, which may be either conducive or detrimental to a desired conversation outcome. The generated probabilities and highlighted patterns may be used by the sales representatives and/or their managers to either increase the probability of a desired outcome and/or optimize for call duration with a specific outcome.
Abstract:
The disclosure is directed to automatically determining product feature requests by analyzing conversations of representatives with customers. A feedback identification system retrieves recordings of various conversations, extracts features of the conversations, and analyzes the features to determine a set of features that is indicative of a feature request. A feature request is a request for adding a specified functionality to a product. The set of features is analyzed to generate a feedback manifest, which includes the feature request (a) as a summary of what is discussed in the conversations or (b) verbatim from the conversations.
Abstract:
The disclosure is directed to automatically determining deals at risk by analyzing conversations of representatives with customers. A risk identification system retrieves recordings of various conversations, extracts features of each of the conversations, and analyzes the features to determine if any of the conversations includes features that are indicative of a deal discussed in that conversation being at risk. By performing such an analysis of conversations, the risk identification system can identify a number of deals that are at risk and generate a report of such deals and notify a consumer user of the risk identification system of such deals.
Abstract:
The disclosure is directed to automatically generating a playlist of conversations having a specified moment. A moment can be occurrence of a specific event or a specific characteristic in a conversation, or any event that is of specific interest for an application for which the playlist is being generated. For example, a moment can include laughter, fast-talking, objections, response to questions, a discussion on a particular topic such as budget, behavior of a speaker, intent to buy, etc., in a conversation. A moment identification system analyzes each of the conversations to determine if one or more features of a conversation correspond to a specified moment, and includes those of the conversations in the playlist having one or more features that correspond to the specified moment. The playlist may include a portion of a conversation that has the specified moment rather than the entire conversation.
Abstract:
A call-modeling system models calls in real-time, with the goal of helping users, e.g., a sales representative and/or their managers, improve and/or guide the outcome of the calls. The call-modeling system generates real-time probabilities for possible outcomes of the conversation, as well as highlight specific on-call patterns, which may be either conducive or detrimental to a desired conversation outcome. The generated probabilities and highlighted patterns may be used by the sales representatives and/or their managers to either increase the probability of a desired outcome and/or optimize for call duration with a specific outcome.
Abstract:
A call assistant device is used to command a call management system to perform a specified task in association with a specified call. The call assistant device can be an Internet of Things (IoT) based device, which can include one or more buttons and connect to a communication network wirelessly. When a user activates the call assistant device, e.g., presses a button, the call assistant device sends a message to the call management system to perform a specified task. Upon receiving the message, the call management system executes the specified task in association with a specified call of the user. The task to be performed can be any task that can be performed in association with a call, e.g., generating a summary of the call, bookmarking a specified moment in the call, sending a panic alert to a particular user, or generating an action item.
Abstract:
A call-modeling system models calls in real-time, with the goal of helping users, e.g., a sales representative and/or their managers, improve and/or guide the outcome of the calls. The call-modeling system generates real-time probabilities for possible outcomes of the conversation, as well as highlight specific on-call patterns, which may be either conducive or detrimental to a desired conversation outcome. The generated probabilities and highlighted patterns may be used by the sales representatives and/or their managers to either increase the probability of a desired outcome and/or optimize for call duration with a specific outcome.
Abstract:
An in-call virtual assistant system monitors a real-time call, e.g., a call that is in progress, between multiple speakers, identifies a trigger and executes a specified task in response to the trigger. The virtual assistant system can be invoked by an explicit trigger or an implicit trigger. For example, an explicit trigger can be a voice command from one of the speakers in the call, such as “Ok Chorus, summarize the call” for summarizing the call. An implicit trigger can be an event that occurred in the call, or outside of the call but that is relevant to a speaker. For example, an event such as a speaker dropping off the call suddenly can be an implicit trigger that invokes the virtual assistant system to perform an associated task, such as notifying the remaining speakers on the call that one of the speakers dropped.
Abstract:
A risk identification system automatically determines deals at risk by analyzing conversations of representatives with customers. The risk identification system retrieves recordings of various conversations, extracts features of each of the conversations, and analyzes the features to determine if any of the conversations includes features that are indicative of a deal discussed in that conversation being at risk. By performing such an analysis of conversations, the risk identification system can identify a number of deals that are at risk and generate a report of such deals and notify a consumer user of the risk identification system of such deals.
Abstract:
A call-modeling system models calls in real-time, with the goal of helping users, e.g., a sales representative and/or their managers, improve and/or guide the outcome of the calls. The call-modeling system generates real-time probabilities for possible outcomes of the conversation, as well as highlight specific on-call patterns, which may be either conducive or detrimental to a desired conversation outcome. The generated probabilities and highlighted patterns may be used by the sales representatives and/or their managers to either increase the probability of a desired outcome and/or optimize for call duration with a specific outcome.