Abstract:
An organic light-emitting diode may have transparent electrodes. An organic emissive layer may be interposed between the electrodes. The emissive layer may emit light in response to current injected from the electrodes. The organic light-emitting diode electrodes may cover an electrode area. The electrode area may be square or may have other shapes. To enhance brightness uniformity, portions of the electrodes in a peripheral region (H1, H2) of the electrode area may have higher sheet resistances than a central portion of the electrode area. The electrode area may be square and may have four corners. The higher sheet resistances may be associated with regions of the electrode area adjacent to the corners. Elevated sheet resistances may be produced by forming the electrodes with different thicknesses in different areas or by providing supplemental conductive structures (104) in selected areas of the electrode area.
Abstract:
A display may have an array of pixels. Each pixel may have a light-emitting diode that emits light under control of a drive transistor. The organic light-emitting diodes may have a common cathode layer, a common electron layer, individual red, green, and blue emissive layers, a common hole layer, and individual anodes. The hole layer may have a hole injection layer stacked with a hole transport layer. Pixel circuits for controlling the diodes may be formed from a layer of thin-film transistor circuitry on a substrate. A planarization layer may cover the thin-film transistor layer. Lateral leakage current between adjacent diodes can be blocked by shorting the common hole layer to a metal line such as a bias electrode that is separate from the anodes. The metal line may be laterally interposed between adjacent pixels and may be formed on the planarization layer or embedded within the planarization layer.
Abstract:
Display structures for controlling viewing angle color shift are described. In various embodiments, polarization sensitive diffusers, independent controlled cathode thicknesses, filtermasks, and color filters are described.
Abstract:
A display may have an array of organic light-emitting diode (OLED) pixels that each have OLED layers interposed between a cathode and an anode. Voltage may be applied to the anode of each pixel to control the magnitude of emitted light. The conductivity of the OLED layers may allow leakage current to pass between neighboring anodes in the display. To reduce leakage current and cross-talk, the thickness of at least one of the OLED layers may be reduced. To maintain the optical cavity of the pixels, transparent optical spacer structures may be inserted. Alternatively, the thickness of the anodes can be increased. To accommodate a common prime layer within the OLED layers, the optical spacers or anodes may be separately patterned to have different thicknesses. Grating structures and photonic crystal structures may be embedded as part of the optical spacers to help control emission at selected viewing angles.
Abstract:
A display may have an array of pixels. Each pixel may have a light-emitting diode that emits light under control of a drive transistor. The organic light-emitting diodes may have a common cathode layer, a common electron layer, individual red, green, and blue emissive layers, a common hole layer, and individual anodes. The hole layer may have a hole injection layer stacked with a hole transport layer. Pixel circuits for controlling the diodes may be formed from a layer of thin-film transistor circuitry on a substrate. A planarization layer may cover the thin-film transistor layer. Lateral leakage current between adjacent diodes can be blocked by shorting the common hole layer to a metal line such as a bias electrode that is separate from the anodes. The metal line may be laterally interposed between adjacent pixels and may be formed on the planarization layer or embedded within the planarization layer.
Abstract:
A display may have an array of organic light-emitting diode (OLED) pixels that each have OLED layers interposed between a cathode and an anode. Voltage may be applied to the anode of each pixel to control the magnitude of emitted light. The conductivity of the OLED layers may allow leakage current to pass between neighboring anodes in the display. To reduce leakage current and cross-talk, the thickness of at least one of the OLED layers may be reduced. To maintain the optical cavity of the pixels, transparent optical spacer structures may be inserted. Alternatively, the thickness of the anodes can be increased. To accommodate a common prime layer within the OLED layers, the optical spacers or anodes may be separately patterned to have different thicknesses. Grating structures and photonic crystal structures may be embedded as part of the optical spacers to help control emission at selected viewing angles.
Abstract:
A display may have an array of pixels formed from organic light-emitting diodes and thin-film transistor circuitry. Each pixel may include organic layers interposed between an anode and a cathode. The organic layers may emit out-coupled light that escapes the display and waveguided light that is waveguided within the organic layers. A reflector may be placed at the edge of the organic layers to reflect the waveguided light out of the display. The reflector may be located within a pixel definition layer and may be formed from metal or may be formed from one or more interfaces between high-refractive-index material and low-refractive-index material. The reflector may be formed from an extended portion of the pixel anode. The reflector may be formed from light-reflecting particles that are suspended in the pixel definition layer.
Abstract:
A display may have an array of pixels formed from organic light-emitting diodes and thin-film transistor circuitry. Each pixel may include organic layers interposed between an anode and a cathode. The organic layers may emit out-coupled light that escapes the display and waveguided light that is waveguided within the organic layers. A reflector may be placed at the edge of the organic layers to reflect the waveguided light out of the display. The reflector may be located within a pixel definition layer and may be formed from metal or may be formed from one or more interfaces between high-refractive-index material and low-refractive-index material, The reflector may be formed from an extended portion of the pixel anode. The reflector may be formed from light-reflecting particles that are suspended in the pixel definition layer.
Abstract:
Display structures for controlling viewing angle color shift are described. In various embodiments, polarization sensitive diffusers, independent controlled cathode thicknesses, filtermasks, touch detection layers, and color filters are described.
Abstract:
An organic light-emitting diode (OLED) display may have an array of organic light-emitting diode pixels that each have OLED layers interposed between a cathode and an anode. Voltage may be applied to the anode of each pixel to control the magnitude of emitted light. The conductivity of the OLED layers may allow leakage current to pass between neighboring anodes in the display. To reduce leakage current and the accompanying cross-talk in a display, the pixel definition layer may disrupt continuity of the OLED layers. The pixel definition layer may have a steep sidewall, a sidewall with an undercut, or a sidewall surface with a plurality of curves to disrupt continuity of the OLED layers. A control gate that is coupled to a bias voltage and covered by gate dielectric may be used to form an organic thin-film transistor that shuts the leakage current channel between adjacent anodes on the display.