Abstract:
A substrate support assembly includes a ceramic puck and a thermally conductive base having an upper surface that is bonded to the ceramic puck. The thermally conductive base includes a plurality of thermal zones and a thermally managed material embedded in the thermally conductive base at the upper surface of the thermally conductive base in one or more of the plurality of thermal zones. The thermally managed material has different thermal conductive properties along a first direction and a second direction. The thermally conductive base further includes a plurality of thermal isolators that extend from the upper surface of the thermally conductive base towards a lower surface of the thermally conductive base between two or more of the plurality of thermal zones without contacting the lower surface of the thermally conductive base. Each of the plurality of thermal isolators provides a degree of thermal isolation.
Abstract:
Embodiments disclosed herein include a method for minimizing chucking forces on a workpiece disposed on a electrostatic chuck within a plasma processing chamber. The method begins by placing a workpiece on an electrostatic chuck in a processing chamber. A plasma is struck within the processing chamber. A deflection force is monitored on the workpiece. A chucking voltage is applied at a minimum value. A backside gas pressure is applied at a minimum pressure. The chucking voltage and or backside gas pressure is adjusted such that the deflection force is less than a threshold value. And the chucking voltage and the backside gas pressure are simultaneously ramped up.
Abstract:
A control system that includes deflection sensors which can control clamping forces applied by electrostatic chucks, and related methods are disclosed. By using a sensor to determine a deflection of a workpiece supported by an electrostatic chuck, a control system may use the deflection measured to control a clamping force applied to the workpiece by the electrostatic chuck. The control system applies a clamping voltage to the electrostatic chuck so that the clamping force reaches and maintains a target clamping force. In this manner, the clamping force may secure the workpiece to the electrostatic chuck to enable manufacturing operations to be performed while preventing workpiece damage resulting from unnecessary higher values of the clamping force.
Abstract:
A substrate support assembly includes a ceramic puck and a thermally conductive base having an upper surface that is bonded to a lower surface of the ceramic puck. The thermally conductive base includes a plurality of thermal zones and a plurality of thermal isolators that extend from the upper surface of the thermally conductive base towards a lower surface of the thermally conductive base, wherein each of the plurality of thermal isolators provides approximate thermal isolation between two of the plurality of thermal zones at the upper surface of the thermally conductive base.
Abstract:
An electrostatic chuck includes a thermally conductive base having a plurality of heating elements disposed therein. A metal layer covers at least a portion of the thermally conductive base, wherein the metal layer shields the plurality of heating elements from radio frequency (RF) coupling and functions as an electrode for the electrostatic chuck. A plasma resistant dielectric layer covers the metal layer.
Abstract:
Implementations described herein provide a substrate support assembly which enables both lateral and azimuthal tuning of the heat transfer between an electrostatic chuck and a heating assembly. The substrate support assembly comprises a body having a substrate support surface and a lower surface, one or more main resistive heaters disposed in the body, a plurality of spatially tunable heaters disposed in the body, and a spatially tunable heater controller coupled to the plurality of spatially tunable heaters, the spatially tunable heater controller configured to independently control an output one of the plurality of spatially tunable heaters relative to another of the plurality of spatially tunable heaters.
Abstract:
A substrate support assembly includes a ceramic puck and a thermally conductive base having an upper surface that is bonded to the ceramic puck. The thermally conductive base includes a plurality of thermal zones and a thermally managed material embedded in the thermally conductive base at the upper surface of the thermally conductive base in one or more of the plurality of thermal zones. The thermally managed material has different thermal conductive properties along a first direction and a second direction. The thermally conductive base further includes a plurality of thermal isolators that extend from the upper surface of the thermally conductive base towards a lower surface of the thermally conductive base between two or more of the plurality of thermal zones without contacting the lower surface of the thermally conductive base. Each of the plurality of thermal isolators provides a degree of thermal isolation.
Abstract:
An electrostatic chuck is described with independent zone cooling that leads to reduced crosstalk. In one example, the chuck includes a puck to carry a substrate for fabrication processes, and a cooling plate fastened to and thermally coupled to the ceramic puck, the cooling plate having a plurality of different independent cooling channels to carry a heat transfer fluid to transfer heat from the cooling plate.
Abstract:
A substrate support assembly includes a ceramic puck and a thermally conductive base having an upper surface that is bonded to a lower surface of the ceramic puck. The thermally conductive base includes a plurality of thermal zones and a plurality of thermal isolators that extend from the upper surface of the thermally conductive base towards a lower surface of the thermally conductive base, wherein each of the plurality of thermal isolators provides approximate thermal isolation between two of the plurality of thermal zones at the upper surface of the thermally conductive base.
Abstract:
A control system that includes deflection sensors which can control clamping forces applied by electrostatic chucks, and related methods are disclosed. By using a sensor to determine a deflection of a workpiece supported by an electrostatic chuck, a control system may use the deflection measured to control a clamping force applied to the workpiece by the electrostatic chuck. The control system applies a clamping voltage to the electrostatic chuck so that the clamping force reaches and maintains a target clamping force. In this manner, the clamping force may secure the workpiece to the electrostatic chuck to enable manufacturing operations to be performed while preventing workpiece damage resulting from unnecessary higher values of the clamping force.