Abstract:
A semiconductor component is provided with a semiconductor substrate, in the upper face of which an active region made of a material of a first conductivity type is introduced by ion implantation. A semiconducting channel region having a defined length and width is designed within the active region. Each of the ends of the channel region located in the longitudinal extension is followed by a contacting region made of a semiconductor material of a second conductivity type. The channel region is covered by an ion implantation masking material, which comprises transverse edges defining the length of the channel region and longitudinal edges defining the width of the channel region and which comprises an edge recess at each of the opposing transverse edges aligned with the longitudinal extension ends of the channel region, the contacting regions that adjoin the channel region extending all the way into said edge recess.
Abstract:
A semiconductor component is provided with a semiconductor substrate, in the upper face of which an active region made of a material of a first conductivity type is introduced by ion implantation. A semiconducting channel region having a defined length and width is designed within the active region. Each of the ends of the channel region located in the longitudinal extension is followed by a contacting region made of a semiconductor material of a second conductivity type. The channel region is covered by an ion implantation masking material, which comprises transverse edges defining the length of the channel region and longitudinal edges defining the width of the channel region and which comprises an edge recess at each of the opposing transverse edges aligned with the longitudinal extension ends of the channel region, the contacting regions that adjoin the channel region extending all the way into said edge recess.
Abstract:
The micro-electromechanical semiconductor component is provided with a semiconductor substrate in which a cavity is formed, which is delimited by lateral walls and by a top and a bottom wall. In order to form a flexible connection to the region of the semiconductor substrate, the top or bottom wall is provided with trenches around the cavity, and bending webs are formed between said trenches. At least one measuring element that is sensitive to mechanical stresses is formed within at least one of said bending webs. Within the central region surrounded by the trenches, the top or bottom wall comprises a plurality of depressions reducing the mass of the central region and a plurality of stiffening braces separating the depressions.
Abstract:
The micro-electromechanical semiconductor component is provided with a semiconductor substrate in which a cavity is formed, which is delimited by lateral walls and by a top and a bottom wall. In order to form a flexible connection to the region of the semiconductor substrate, the top or bottom wall is provided with trenches around the cavity, and bending webs are formed between said trenches. At least one measuring element that is sensitive to mechanical stresses is formed within at least one of said bending webs. Within the central region surrounded by the trenches, the top or bottom wall comprises a plurality of depressions reducing the mass of the central region and a plurality of stiffening braces separating the depressions.