Abstract:
A highly reliable structure for high-speed response and high-speed driving of a semiconductor device, in which on-state characteristics of a transistor are increased is provided. In the coplanar transistor, an oxide semiconductor layer, a source and drain electrode layers including a stack of a first conductive layer and a second conductive layer, a gate insulating layer, and a gate electrode layer are sequentially stacked in this order. The gate electrode layer is overlapped with the first conductive layer with the gate insulating layer provided therebetween, and is not overlapped with the second conductive layer with the gate insulating layer provided therebetween.
Abstract:
To provide a highly reliable semiconductor device. To provide a semiconductor device which prevents a defect and achieves miniaturization. An oxide semiconductor layer in which the thickness of a region serving as a source region or a drain region is larger than the thickness of a region serving as a channel formation region is formed in contact with an insulating layer including a trench. In a transistor including the oxide semiconductor layer, variation in threshold voltage, degradation of electric characteristics, and shift to normally on can be suppressed and source resistance or drain resistance can be reduced, so that the transistor can have high reliability.
Abstract:
The semiconductor device is provided in which a plurality of memory cells each including a first transistor, a second transistor, and a capacitor is arranged in matrix and a wiring (also referred to as a bit line) for connecting one of the memory cells and another one of the memory cells and a source or drain region in the first transistor are electrically connected through a conductive layer and a source or drain electrode in the second transistor provided therebetween. With this structure, the number of wirings can be reduced in comparison with a structure in which the source or drain electrode in the first transistor and the source or drain electrode in the second transistor are connected to different wirings. Thus, the integration degree of a semiconductor device can be increased.
Abstract:
It is an object of the present invention to provide a method of separating a thin film transistor, and circuit or a semiconductor device including the thin film transistor from a substrate by a method different from that disclosed in the patent document 1 and transposing the thin film transistor, and the circuit or the semiconductor device to a substrate having flexibility. According to the present invention, a large opening or a plurality of openings is formed at an insulating film, a conductive film connected to a thin film transistor is formed at the opening, and a peeling layer is removed, then, a layer having the thin film transistor is transposed to a substrate provided with a conductive film or the like. A thin film transistor according to the present invention has a semiconductor film which is crystallized by laser irradiation and prevents a peeling layer from exposing at laser irradiation not to be irradiated with laser light.
Abstract:
A semiconductor device is demonstrated in which a plurality of field-effect transistors is stacked with an interlayer insulating layer interposed therebetween over a substrate having an insulating surface. Each of the plurality of filed-effect transistors has a semiconductor layer which is prepared by a process including separation of the semiconductor layer from a semiconductor substrate followed by bonding thereof over the substrate. Each of the plurality of field-effect transistors is covered with an insulating film which provides distortion of the semiconductor layer. Furthermore, the crystal axis of the semiconductor layer, which is parallel to the crystal plane thereof, is set to a channel length direction of the semiconductor layer, which enables production of the semiconductor device with high performance and low power consumption having an SOI structure.
Abstract:
To fabricate a Schottky barrier diode in which a decrease in on current due to parasitic resistance is suppressed, variations in on current are suppressed, and an increase in off current is suppressed. The fabricating method includes the steps of forming an island-shape semiconductor film; doping the island-shape semiconductor film with a first impurity element to form a first impurity region; forming an insulating film so as to cover the island-shape semiconductor film; etching the insulating film to form a first opening and a second opening that partly expose the first impurity region; forming a mask over the insulating film so as to cover the first opening and expose the second opening; doping the first impurity region with a second impurity element to form a second impurity region; and forming a first wiring in contact with the first impurity region exposed at the first opening, and forming a second wiring in contact with the second impurity region exposed at the second opening. Since the second impurity element is added through the second opening, the periphery of the second opening is also doped with a slight amount of the second impurity element. Therefore, the first impurity region and the second wiring are located away a short distance from each other such that they are not shorted.
Abstract:
To provide a liquid crystal display device having high quality display with a high aperture ratio while securing a sufficient storage capacitor (Cs), and at the same time, by dispersing a load (a pixel writing-in electric current) of a capacitor wiring in a timely manner to effectively reduce the load. A scanning line is formed on a layer that is different from a gate electrode so that the capacitor wiring is arranged in parallel with a signal line. Each pixel is connected to the individually independent capacitor wiring via a dielectric. Therefore, variations in the electric potential of the capacitor wiring caused by a writing-in electric current of adjacent pixels can be avoided, thereby obtaining satisfactory display images.
Abstract:
A test circuit and a test method using a plurality of oscillation circuits for evaluation are provided in order to reduce the measuring time and simplify the test. One measuring terminal is shared by a plurality of oscillation circuits for evaluation that are formed over the same substrate as a semiconductor device such as a display device, and the plurality of oscillation circuits for evaluation can be tested by the measuring output terminal. Then, the measurement results are Fourier transformed to obtain the oscillation frequency of the plurality of oscillation circuits for evaluation at the same time. Thus, variations in semiconductor elements can be evaluated.
Abstract:
Provided is a semiconductor device including a transistor with large on-state current even when it is miniaturized. The transistor includes a pair of first conductive films over an insulating surface; a semiconductor film over the pair of first conductive films; a pair of second conductive films, with one of the pair of second conductive films and the other of the pair of second conductive films being connected to one of the pair of first conductive films and the other of the pair of first conductive films, respectively; an insulating film over the semiconductor film; and a third conductive film provided in a position overlapping with the semiconductor film over the insulating film. Further, over the semiconductor film, the third conductive film is interposed between the pair of second conductive films and away from the pair of second conductive films.
Abstract:
In a semiconductor device including an oxide semiconductor layer, a conductive layer is formed in contact with a lower portion of the oxide semiconductor layer and treatment for adding an impurity is performed, so that a channel formation region and a pair of low-resistance regions between which the channel formation region is sandwiched are formed in the oxide semiconductor layer in a self-aligned manner. Wiring layers electrically connected to the conductive layer and the low-resistance regions are provided in openings of an insulating layer.