A) from 30 to 97% by weight of at least one polyamide, B) from 1 to 20% by weight of a melamine compound, C) from 1 to 50% by weight of a mineral filler composed of a mixture of (crypto)crystalline silica (C1) and amorphous silica (C2) and of calcined kaolin (C3), D) from 0 to 20% by weight of a fibrous filler, E) from 0 to 25% by weight of talc powder, F) from 0 to 15% by weight of other additives, where the total of the percentages by weight of A) to F) is 100%.
Abstract:
The invention relates to the use of thermal plastic molding compositions comprising A)from 10to 97% by weight of a thermoplastic polyamide, B)from 1to 10% by weight of red phosphorus, C)from 0.15to 6% by weight of a dialkylphosphinic salt, where the ratio of B) to C) is from 6:1 to 6:4, D)from 1to 10% by weight of an ethylene copolymer as impact modifier comprisingas component D) a copolymer of D1)from 40to 98% by weight of ethylene D2)from 2to 40% by weight of a (meth)acrylate having from 1 to 18 carbon atoms, or/and D3)from 0to 20% by weight of functional monomers selected from the group of the ethylenically unsaturated mono- or dicarboxylic acids or of the carboxylic anhydrides or epoxide groups, or a mixture of these, or an ethylene-(meth)acrylic acid copolymer neutralized with zinc up to an extent of 72%, E)from 0to 5% by weight of talc powder with a median particle size (d50 value) below 7.5 μm, F)from 0to 60% by weight of further additional substances, where the sum of the percentages by weight of components A) to F) is 100%, for the production of flame-retardant, glow-wire-resistant moldings.
Abstract:
Described herein is a thermoplastic molding composition including a) from 30 to 92.5% by weight of at least one thermoplastic polyamide as component A, b) from 1 to 15% by weight of melamine cyanurate as component B, c) from 1 to 50% by weight of glass microspheres with an arithmetic mean sphere diameter d50 in the range from 10 to 100 μm, as component C, d) from 5 to 20% by weight of short glass fibers with an arithmetic mean fiber length d50 of from 100 to 900 μm, as component D, and e) from 0.5 to 10% by weight of other additional substances and processing aids as component E, where the sum of the percentages by weight of components A to E is 100% by weight.
Abstract:
Thermoplastic molding compositions containing A) from 30 to 97% by weight of at least one polyamide, B) from 1 to 20% by weight of a melamine compound, C) from 1 to 50% by weight of a mineral filler composed of a mixture of (crypto)crystalline silica (C1) and amorphous silica (C2) and of calcined kaolin (C3), D) from 0 to 20% by weight of a fibrous filler, E) from 0 to 25% by weight of talc powder, F) from 0 to 15% by weight of other additives, where the total of the percentages by weight of A) to F) is 100%.
Abstract:
Thermoplastic molding compositions comprising a thermoplastic polyester, a poly(ε-caprolactone), a biodegradable polyester differing from the poly(ε-caprolactone), a phosphinic salt and a polar modified polyolefin wax prepared by means of metallocene catalysts, the use of the thermoplastic molding compositions for the production of flame-retardant moldings of any type, to the resultant moldings, and to the use of the polar modified polyolefin wax prepared by means of metallocene catalysts for an improvement of the flame retardancy of thermoplastic molding compositions comprising a thermoplastic polyester.
Abstract:
A thermoplastic molding composition is disclosed. The thermoplastic molding composition includes A) from 20 to 96.9% by weight of a thermoplastic polyamide, B) from 1 to 20% by weight of an inorganic phosphinate salt, C) from 1 to 15% by weight of an organic phosphinate salt, D) from 1 to 15% by weight of melamine cyanurate, E) from 0.1 to 10% by weight of a polyvinylpyrrolidone homopolymer, and F) from 0 to 50% by weight of other additives. The total of the percentages by weight of A) to F) is 100%.
Abstract:
Thermoplastic molding compositions comprising A) from 10 to 99.8% by weight of a thermoplastic polyamide, B) from 0.1 to 60% by weight of red phosphorus, C) from 0.05 to 5% by weight of a catalyst comprising copper and zinc and support material, D) from 0 to 40% by weight of an impact modifier, E) from 0 to 60% by weight of further additives, where the total of the percentages by weight of A) to E) is 100%.
Abstract:
Described herein are thermoplastic molding materials including components: A) 10 to 98.5 wt % of a thermoplastic polyamide, B) 1 to 20 wt % of red phosphorus, C) 0.5 to 15 wt % of an aluminum salt of phosphonic acid, D) 0 to 55 wt % of a fibrous or particulate filler or mixtures thereof, E) 0 to 30 wt % of further additives, wherein the weight percentages of the components A) to E) sum to 100%.
Abstract:
A thermoplastic molding composition is disclosed. The thermoplastic molding composition includes A) from 20 to 96.9% by weight of a thermoplastic polyamide, B) from 1 to 20% by weight of an inorganic phosphinate salt, C) from 1 to 15% by weight of an organic phosphinate salt, D) from 1 to 15% by weight of melamine cyanurate, E) from 0.1 to 10% by weight of a polyvinylpyrrolidone homopolymer, and F) from 0 to 50% by weight of other additives. The total of the percentages by weight of A) to F) is 100%.
Abstract:
The invention relates to the use of thermal plastic molding compositions comprising A) from 10 to 97% by weight of a thermoplastic polyamide, B) from 1 to 10% by weight of red phosphorus, C) from 0.15 to 6% by weight of a dialkylphosphinic salt, where the ratio of B) to C) is from 6:1 to 6:4, D) from 1 to 10% by weight of an ethylene copolymer as impact modifier comprising as component D) a copolymer of D1) from 40 to 98% by weight of ethylene D2) from 2 to 40% by weight of a (meth)acrylate having from 1 to 18 carbon atoms, or/and D3) from 0 to 20% by weight of functional monomers selected from the group of the ethylenically unsaturated mono- or dicarboxylic acids or of the carboxylic anhydrides or epoxide groups, or a mixture of these, or an ethylene-(meth)acrylic acid copolymer neutralized with zinc up to an extent of 72%, E) from 0 to 5% by weight of talc powder with a median particle size (d50 value) below 7.5 μm, F) from 0 to 60% by weight of further additional substances, where the sum of the percentages by weight of components A) to F) is 100%, for the production of flame-retardant, glow-wire-resistant moldings.