Abstract:
Described herein is a process for the production of moldings made of porous material impregnated with polysulfide, the process including the following steps:(a) insertion of the porous material into a mold;(b) introduction of liquid polysulfide into the mold at a flow rate within the porous material in the range from 0.5 to 200 cm/s;(c) cooling of the polysulfide to a temperature below the melting point of the polysulfide; and(d) removal of the porous material impregnated with the polysulfide.
Abstract:
Method of maintaining or widening the long-term operating temperature range of a heat transfer medium and/or heat storage medium comprising a nitrate salt composition selected from the group consisting of alkali metal nitrate and alkaline earth metal nitrate and optionally alkali metal nitrite and alkaline earth metal nitrite, wherein the nitrate salt composition is brought into contact with an additive comprising the components nitric acid and/or nitrous acid and oxygen-comprising gas having an oxygen partial pressure which is equal to or greater than that in air and/or oxygen-generating compounds and optionally nitrogen oxides and/or compounds which generate further nitrogen oxide.
Abstract:
Articles, compositions, and methods involving ionically conductive compounds are provided. The disclosed ionically conductive compounds may be incorporated into an electrochemical cell (e.g., a lithium-sulfur electrochemical cell, a lithium-ion electrochemical cell, an intercalated-cathode based electrochemical cell) as, for example, a protective layer for an electrode, a solid electrolyte layer, and/or any other appropriate component within the electrochemical cell. In certain embodiments, electrode structures and/or methods for making electrode structures including a layer comprising an ionically conductive compound described herein are provided.
Abstract:
Articles, compositions, and methods involving ionically conductive compounds are provided. The disclosed ionically conductive compounds may be incorporated into an electrochemical cell (e.g., a lithium-sulfur electrochemical cell, a lithium-ion electrochemical cell, an intercalated-cathode based electrochemical cell) as, for example, a protective layer for an electrode, a solid electrolyte layer, and/or any other appropriate component within the electrochemical cell. In certain embodiments, electrode structures and/or methods for making electrode structures including a layer comprising an ionically conductive compound described herein are provided.
Abstract:
Articles, compositions, and methods involving ionically conductive compounds are provided. The disclosed ionically conductive compounds may be incorporated into an electrochemical cell (e.g., a lithium-sulfur electrochemical cell, a lithium-ion electrochemical cell, an intercalated-cathode based electrochemical cell) as, for example, a protective layer for an electrode, a solid electrolyte layer, and/or any other appropriate component within the electrochemical cell. In certain embodiments, electrode structures and/or methods for making electrode structures including a layer comprising an ionically conductive compound described herein are provided.
Abstract:
Composite structures including an ion-conducting material and a polymeric material (e.g., a separator) to protect electrodes are generally described. The ion-conducting material may be in the form of a layer that is bonded to a polymeric separator. The ion-conducting material may comprise a lithium oxysulfide having a lithium-ion conductivity of at least at least 10−6 S/cm.
Abstract translation:通常描述包括用于保护电极的离子传导材料和聚合材料(例如隔膜)的复合结构。 离子导电材料可以是与聚合物分离器结合的层的形式。 离子导电材料可以包含锂离子电导率至少为10 -6 S / cm 2的氧硫化硫。
Abstract:
Nitrate salt composition comprising as significant constituentsA) an alkali metal nitrate and optionally an alkali metal nitrite in a total amount in the range from 90 to 99.84% by weight and B) an alkali metal compound selected from the group B1) alkali metal oxide, B2) alkali metal carbonate, B3) alkali metal compound which decomposes into alkali metal oxide or alkali metal carbonate in the temperature range from 250° C. to 600° C., B4) alkali metal hydroxide MetOH, in which Met is lithium, sodium, potassium, rubidium, cesium, B5) alkali metal peroxide Met2O2, in which Met is lithium, sodium, potassium, rubidium, cesium, and B6) alkali metal superoxide MetO2, in which Met is sodium, potassium, rubidium, cesium, in a total amount in the range from 0.16 to 10% by weight, in each case based on the nitrate salt composition.
Abstract:
Articles, compositions, and methods involving ionically conductive compounds are provided. In some embodiments, the ionically conductive compounds are useful for electrochemical cells. The disclosed ionically conductive compounds may be incorporated into an electrochemical cell (e.g., a lithium-sulfur electrochemical cell, a lithium-ion electrochemical cell, an intercalated-cathode based electrochemical cell) as, for example, a protective layer for an electrode, a solid electrolyte layer, and/or any other appropriate component within the electrochemical cell. In certain embodiments, electrode structures and/or methods for making electrode structures including a layer comprising an ionically conductive compound described herein are provided.
Abstract:
Articles, compositions, and methods involving ionically conductive compounds are provided. In some embodiments, the ionically conductive compounds are useful for electrochemical cells. The disclosed ionically conductive compounds may be incorporated into an electrochemical cell (e.g., a lithium-sulfur electrochemical cell, a lithium-ion electrochemical cell, an intercalated-cathode based electrochemical cell) as, for example, a protective layer for an electrode, a solid electrolyte layer, and/or any other appropriate component within the electrochemical cell. In certain embodiments, electrode structures and/or methods for making electrode structures including a layer comprising an ionically conductive compound described herein are provided.