Abstract:
The present invention relates to an OLED display panel including: two substrates opposite to each other; a plurality of pixel regions disposed between inner sides of the two substrates and each comprising a blue sub-pixel sub-region, a green sub-pixel sub-region and a red sub-pixel sub-region; and a circularly polarizing plate disposed at an outer side of one of the substrates on a light outgoing side of the display panel; wherein, an opening zone is within a projection area where a projection of each of the pixel regions on the circularly polarizing plate in a thickness direction of the display panel is located, and through the opening zone the corresponding sub-pixel sub-regions are exposed. The present invention also relates to a method for manufacturing an OLED display panel and a display apparatus having the OLED display panel. With the technical solutions of the present invention, a transmittance of the circularly polarizing plate can be improved to reduce power consumption of the OLED, and thus of a whole display panel.
Abstract:
The present invention provides a light-emitting apparatus, a method for forming a light-emitting apparatus, and a display apparatus. The light-emitting apparatus comprises at least one OLED light-emitting unit and at least one quantum dot light-emitting unit, wherein the at least one quantum dot light-emitting unit and the at least one OLED light-emitting unit are arranged in series.
Abstract:
A pixel circuit is provided. The pixel circuit includes a photoelectric converter unit, an amplifier unit, a reset unit, a compensation unit, a charging unit, and a readout unit, wherein the photoelectric converter unit is connected to a first voltage terminal and the amplifier unit, and is configured to convert an optical signal into an electric signal, wherein the amplifier unit is connected to the photoelectric converter unit, the charging unit, and the readout unit, and is configured to amplify an output signal from the photoelectric converter unit, and wherein the reset unit is connected to a reset terminal, the first voltage terminal, and the amplifier unit, and is configured to reset the amplifier unit based on an input signal from the reset terminal and an input signal from the first voltage terminal.
Abstract:
An OLED display panel includes: two substrates opposite to each other; a plurality of pixel regions disposed between inner sides of the two substrates and each comprising a blue sub-pixel sub-region, a green sub-pixel sub-region and a red sub-pixel sub-region; and a circularly polarizing plate disposed at an outer side of one of the substrates on a light outgoing side of the display panel; wherein, an opening zone is within a projection area where a projection of each of the pixel regions on the circularly polarizing plate in a thickness direction of the display panel is located, and through the opening zone the corresponding sub-pixel sub-regions are exposed. A method for manufacturing an OLED display panel and a display apparatus having the OLED display panel are also disclosed.
Abstract:
The present invention provides a light-emitting apparatus, a method for forming a light-emitting apparatus, and a display apparatus. The light-emitting apparatus comprises at least one OLED light-emitting unit and at least one quantum dot light-emitting unit, wherein the at least one quantum dot light-emitting unit and the at least one OLED light-emitting unit are arranged in series.
Abstract:
The present disclosure provides a display apparatus and a method for driving the same, which relates to a display field and solves an issue of difficulty of implementing a high resolution by changing the substrate in the present display panel. The display apparatus comprises a display panel, an light modulator, a first driving module and second driving module, wherein the display panel comprises a plurality of pixels including n virtual pixels; the light modulator is provided at a light outputting side of the display panel and comprises a plurality of light modulation units corresponding to the pixels, and the light modulation unit comprises n light modulation areas corresponding to the virtual pixels; and one frame of image comprises n pieces of sub-frame images; the first driving module is configured to drive the display panel to display n continuous sub-frame images in one frame of image in turn; the second driving module is configured to drive the nth light modulation area of the light modulation unit to be a light transmitted region in the nth sub-frame image in turn, and to drive the remaining (n-1) light modulation areas to be a light shielding region, in which N is a positive integer larger than or equal to 2.