Abstract:
A lucent crucible of a Lucent Waveguide Microwave Plasma Light Source (LWMPLS) comprising a Light Emitting Resonator (LER) in form of a crucible (1) of fused quartz which has a central void (2) having microwave excitable material (3) within it. In one example, the void is 4 mm in diameter and has a length (L) of 21 mm. The LWMPLS is operated at a power (P) of 280 W and thus with a plasma loading P/L of 133 w/cm and a wall loading of 106 w/cm2. The lamp is thus operated with a high efficiency—in terms of lumens per watt—while having a reasonable lifetime.
Abstract:
A light source comprising a lucent waveguide of solid dielectric material having: an at least partially light transmitting Faraday cage surrounding the waveguide, a bulb cavity within the waveguide and the Faraday cage and an antenna re-entrant within the waveguide and the Faraday cage and a bulb having a microwave excitable fill, the bulb being received in the bulb cavity.
Abstract:
A discharge tube of glass, filled with a halogen/noble-gas mix, which passes through a ½ lambda wave guide of alumina at an aperture ¼ lambda from one end. The wave guide is silver plated to establish resonance between its opposed ends. An antenna/probe is provided in another aperture, driven via a matching circuit from an amplifier. The discharge tube has a length greater than twice the thickness of the wave guide, extending from the wave guide on at least one side thereof.
Abstract:
An electrodeless bulb (1) has a hollow quartz tube (2), with a solid stem (3) extending from one end and a short hollow tip (4) extending from the other end. The hollow interior (5) of the tube extends into the tip (4) with the same diameter as in the tube (2), but the wall thickness (6) of the tip is reduced from that (7) of the tube (2). The bulb is charged with an amount (8) of indium bromide and traces of other metal halides to adjust light spectrum and a filling of xenon gas.
Abstract:
Metal halide discharge lamps based on sodium and scandium iodides show improved color rendering without important loss of efficacy by the inclusion of lithium iodide, especially in the molar proportion of 10-50% LiI based on the total of Li, Na and Sc iodides. The ratio of alkali metal of SC iodides should be between 5.4:1 and 57.5:1. Especially preferred are lamps with less than 10 molar % ScI and the lamps may additionally contain caesium iodide to broaden the emission spectrum.
Abstract:
A Lucent Waveguide Electromagnetic wave Plasma Light Source has a fabrication of fused quartz sheet and drawn tube. An inner closed void enclosure is formed of 8 mm outside diameter, 4 mm inside diameter drawn tube. Electromagnetic wave excitable plasma material is sealed inside the enclosure. The end plate is circular and has the enclosure sealed in a central bore in it, the bore not being numbered as such. A similar plate is positioned to leave a small gap between the inner end of the enclosure and itself. The two tubes are concentric with the two plates extending at right angles to their central axis. The outer tube extends back from the back surface of the inner plate as a skirt.
Abstract:
A lamp has microwave resonant body (11) of transparent quartz. The body has a central bore (16), having a sealed plasma enclosing bulb (17) inserted in it. The bulb is of quartz also and has an external diameter which is a close fit in the bore. The bulb itself is of drawn quartz tube (18) and as such has a smooth internal bore (19). End caps (20) are fused to the tube and encapsulate a charge of a material excitable to form a light emitting plasma in the bulb when microwaves are fed into the body via an antenna (7) in a bore (21) in the body. The body is sized to establish resonance within the Faraday cage in the body (11), bulb (17) and fill containing void (22) within the bulb. There is negligible gap between the bulb and body, whereby they can be regarded as one for resonance purposes. The bulb is fixed in the body by welds (23).
Abstract:
A plasma crucible has a through bore and two tubes butt scaled on to the end faces of the crucible. One of the tubes is closed prior to the filling of the crucible. The tube is tipped off and worked in a glass lathe to form it to have a flat end. After evacuation, dosing and gas fill, the other tube is tipped off in the similar manner.
Abstract:
A lamp 1 comprises an oscillator and amplifier source 2 of microwave energy, typically operating at 2.45 or 5.8 GHz or other frequencies within an ISM band. The source passes the microwaves via a matching circuit 3 to an antenna 4 extending into a re-entrant 5 in a lucent waveguide 6. This is of quartz and has a central cavity 7 accommodating a bulb 8. The bulb is a sealed tube 9 of quartz and contains a fill of noble gas and a microwave excitable material, which radiates visible light when excited by microwaves. The bulb has a stem 10 received in a stem bore 11 extending from the central cavity. The waveguide is transparent and light from the bulb can leave it in any direction, subject to any reflective surfaces. Microwaves cannot leave the waveguide, which is limited at its surfaces by a Faraday cage. Typically this comprises an ITO coating 12 on a front face of the waveguide, a light reflective coating 10, typically of silver with silicon monoxide coating 13 on a rear face and a wire mesh 14, which contacts both the ITO and light reflective coatings and is grounded, the wire mesh extending around sides of the waveguide between the front and back surfaces. Light can pass through the wire mesh for collection and use.
Abstract:
Operation to produce an intermediate product for a crucible for a LUWPL is as follows: a) a body 2 is preheated and placed on a support, with its bore concentric with a tube 4 supported in a chuck and connected to a inflation means; b) the tube is heated with the chuck being rotated for evenness of heating; c) when the temperature of the tube is detected to be the softening point of the quartz of the tube, its rotation is stopped and it is advanced into a bore 3 in the body 2; d) advance is stopped when the distal, sealed end is detected to have reached a determined protrusion 18; e) simultaneously with the advance being stopped, inflation gas is admitted into the tube, to inflate it albeit it marginally, and bring its outer surface 5 into intimate contact with the surface 6 of the bore 4.