Abstract:
A spatial phase modulator and a method for producing a spatial phase modulator are provided. The spatial phase modulator includes a first substrate and a second substrate that are meshed together, and a liquid crystal layer disposed between the two substrates, where a transparent electrode layer and a first alignment and guiding layer are disposed in a cascading manner on a side that is of the first substrate and that faces the liquid crystal layer; and an electrode layer and an insulation medium glass layer are disposed in a cascading manner on a side that is of the second substrate and that faces the liquid crystal layer, where the insulation medium glass layer has an inclined serration structure on a side facing the liquid crystal layer.
Abstract:
An image display system is provided and includes: at least one first projection unit, configured to project rays of N images on a first plane, so that the rays of the N images are projected on N first regions of the first plane, where the N images are images of a target object photographed based on N angles, and N≥2; and at least one first refraction unit, configured on the first plane, and configured to perform refraction processing on the rays of the images projected on the first regions, so that the rays of the N images are collected on a common display region. In this way, presentation of a three-dimensional image can adapt to a human eye viewing habit.
Abstract:
This invention relates to methods and apparatus for routing light beams in telecommunications devices using holographic techniques, in particular by displaying kinoforms on Liquid Crystal on Silicon devices. At least one optical input to receives an input beam. A plurality of optical outputs and a spatial light modulator (SLM) on an optical path between said optical input and said optical outputs are provided, and a driver for said SLM to display a kinoform on said SLM diffracts said input beam into an output beam comprising a plurality of diffraction orders, wherein a routed one of said diffraction orders is directed to at least one selected said optical output; said apparatus is configured to modify a wavefront of said output beam to reduce a coupling of said output beam into said selected optical output; and said kinoform is adapted to compensate for said wavefront modification to compensate for said reduced coupling.
Abstract:
A LCOS routing device, comprising: an optical input and plurality of optical outputs; a spatial light modulator (SLM) between said input and output, for displaying a kinoform; a data processor, configured to provide kinoform data for displaying said kinoform on said SLM. Said data processor inputs routing and calculates said kinoform data. Said data processor calculates kinoform data by: determining an initial phase pattern for said kinoform; calculating a replay field of said phase pattern; modifying an amplitude component of said replay field, retaining a phase component of said replay field to provide an updated replay field; performing a space-frequency transform on said updated replay field to determine an updated phase pattern for said kinoform; and repeating said calculating and updating of said replay field and said performing of said space-frequency transform until said kinoform for display is determined; and outputting said kinoform data for display on said LCOS SLM.
Abstract:
An image generation system for providing a ghost image free head-up display, the system comprising a display screen having a front surface and a back surface, a picture generation unit for projecting an image towards the display screen for reflection towards an eye box, a field lens, and an anisotropic optical component having a first optical power along a first axis and second optical power along a second axis, wherein the first and second axis are perpendicular, wherein the picture generation unit is configured to project light through the field lens such that light is incident on the front surface of the display screen forming a first virtual image, wherein a portion of the light is transmitted through the display screen and is incident on the back surface of the display screen forming a second virtual image, wherein the first and second virtual images are offset along the first axis, wherein the field lens is configured to project the first virtual image at a first projection distance and the second virtual image at a second projection distance such that the offset is below a threshold magnitude and the first and second virtual images are substantially overlaid as viewed from the eye box, and wherein the anisotropic optical component is configured to magnify the first and second virtual image along the second axis only.
Abstract:
An imaging system includes an image realisation device, and projection optics for rendering a display image on a display screen. The image realisation device includes an image realisation surface and a light structuring device having a surface with a first and second region. The light structuring device simulates a first lens on the first region of the surface. A first source image formed on a first region of the image realisation surface and projected through the projection optics renders a first display image on the display screen at a first apparent depth. The light structuring device simulates a second lens on the second region of the surface. A second source image formed on a second region of the image realisation surface and projected through the projection optics renders a second display image on the display screen at a second apparent depth. The first and second lens are independently configurable.
Abstract:
The present disclosure provides a device for generating a 3D light field. The device comprises a first lens having a fixed focal length, and an imaging element arranged to send light into the first lens. The imaging element is configured to send the light from different positions within a defined distance on the optical axis of the first lens, in order to produce different depth layers of the 3D light field within a frame duration.
Abstract:
Provided is an optically addressable spatial light modulator (OASLM)-based holographic display and a method of operating the same. The display includes an addressing unit including a light source unit emitting a plurality of recording beams, a driving mirror array including driving mirrors that each reflect a recording beam incident thereon, and a mirror member array including mirror members that each obliquely reflect a recording beam incident thereon, in which each of the driving mirrors corresponds to one of the mirror members. The recording beams, which are transmitted by the addressing unit, are focused onto the OASLM by micro lenses of a lenslet array. The OASLM is optically addressed by the recording beams focused by the micro lenses of the lenslet array and thus modulates and diffracts a reproduction beam, incident thereon from a reproduction beam providing unit, and thus a holographic image is reproduced.
Abstract:
The present invention provides an optical imaging processing system. The system includes a screen, an incident light source, and at least one optical transmission medium, where the optical transmission medium is disposed in an optical imaging path in which the incident light source is emergent and is projected to the screen; an light incident face of the optical transmission medium faces the incident light source, and an light exiting face of the optical transmission medium faces the screen, where at least one cavity is included between the light incident face and the light exiting face of the optical transmission medium, and a cross-section shape of the cavity is an isosceles trapezoid; and the cavity includes a light transmission area and a light blanking area used for object accommodation, and the optical imaging path bypasses the light blanking area and penetrates through the optical transmission medium through the light transmission area.
Abstract:
Provided are an optically addressable spatial light modulator (OASLM) divided into a plurality of segments, and an apparatus and method for displaying a holographic three-dimensional (3D) image using the OASLM. The holographic 3D image display apparatus includes a first light source which emits a write beam, an electric addressable spatial light modulator (EASLM) which modulates the write beam emitted from the first light source according to hologram information regarding a 3D image, a second light source which emits a read beam, an OASLM which receives the write beam modulated by the EASLM and modulates the read beam emitted from the second light source according to hologram information included in the modulated write beam, a scanning optical unit which projects the write beam modulated by the EASLM onto the OASLM, and a Fourier lens which focuses the read beam modulated by the OASLM onto a predetermined space to form the 3D image.