Abstract:
An electroplating system for depositing a plating material on an object includes a pressure device and an anode element. The pressure device includes a lid having first and second through holes and a base having a chamber, conduction holes and third through holes located in the chamber. Each of the conduction tubes includes a conduction hole connecting to one of the third through holes. The lid covers the chamber, the first through holes communicate with the chamber for spraying an electroplating solution toward the object and the second through holes reveal the conduction holes. A passage of electric force line is formed in the connected holes and the third through holes filled with the electroplating solution, and the anode element is located outside the passage of electric force line. The electroplating system can prevent defective plating and enhance plating efficiency.
Abstract:
A surface acoustic wave device includes a piezoelectric substrate, a supportive layer, a cover layer and a pillar bump. The supportive layer is disposed on the piezoelectric substrate and around a transducer, the cover layer covers the supportive layer, and the pillar bump is located in a lower via hole of the supportive layer and an upper via hole of the cover layer. The upper via hole has a lateral opening located on a lateral surface of the cover layer, and the pillar bump in the cover layer protrudes from the lateral surface of the cover layer via the lateral opening.
Abstract:
A microchip is electrically connected to a substrate to become a chip package, preferably for LED. A chip of the package includes a body and at least one electrode which is disposed and exposed on a surface of the body. The electrode includes a confining groove and a confining wall. The confining wall is peripherally located around the confining groove and provided to confine at least one conductive particle of an adhesive in the confining groove. The electrode of the chip is electrically connected to a bonding pad of a substrate via the conductive particle confined in the confining groove.
Abstract:
An electroplating system for depositing a plating material on an object includes a pressure device and an anode element. The pressure device includes a lid having first and second through holes and a base having a chamber, conduction holes and third through holes located in the chamber. Each of the conduction tubes includes a conduction hole connecting to one of the third through holes. The lid covers the chamber, the first through holes communicate with the chamber for spraying an electroplating solution toward the object and the second through holes reveal the conduction holes. A passage of electric force line is formed in the connected holes and the third through holes filled with the electroplating solution, and the anode element is located outside the passage of electric force line. The electroplating system can prevent defective plating and enhance plating efficiency.
Abstract:
A semiconductor manufacturing process includes the following steps of providing a silicon substrate having at least one connection pad and a protection layer, forming a first seed layer having at least one first section and at least one second section, forming a first photoresist layer, forming a first buffer layer having a coupling portion and a cladding portion, removing the first photoresist layer, removing the second section of the first seed layer to form a first under bump metallurgy layer, forming a support layer on the protection layer and the first buffer layer, the first under bump metallurgy layer has a first ring wall, the first buffer layer has a second ring wall, wherein the first ring wall, the second ring wall and the cladding portion are cladded by the support layer, and forming a connection portion and covering the coupling portion with the connection portion.
Abstract:
In a method of manufacturing a chip structure, a first carrier is attached on a back surface of a wafer, the wafer is diced into individual dies and there is a groove formed between the adjacent dies, then a second carrier is attached on an active surface of the wafer and the first carrier is removed to expose the groove, a back surface and a lateral surface of each of the dies, a heat dissipation cover is formed on the back surface and the lateral surface of each of the dies to obtain chip structures. The heat dissipation cover is provided to increase heat dissipation efficiency of the dies and prevent formation of metal debris which may contaminate the dies. Furthermore, the heat dissipation cover is prevented from being separated from the die.
Abstract:
The present invention discloses a storage container for electronic devices, especially for wafer frames. The storage container includes a body and a stop rod that is provided to open or close a pick-and-place path in the body. The pick-and-place path is open to allow the wafer frames placed in the body to be taken out when a recess of the stop rod is located in the pick-and-place path. On the contrary, the pick-and-place path is closed when a blocking part of the stop rod is located in the pick-and-place path so as to protect the wafer frames placed in the body from falling out from the storage container.
Abstract:
A semiconductor device having 3D inductor includes a first transverse inductor, a longitudinal inductor and a second transverse inductor. The first transverse inductor is formed on a first substrate, the second transverse inductor and the longitudinal inductor are formed on a second substrate. The second substrate is bonded to the first substrate to connect the first transverse inductor and the longitudinal inductor such that the first transverse inductor, the longitudinal inductor and the second transverse inductor compose a 3D inductor.
Abstract:
A semiconductor package structure having hollow chamber includes a bottom substrate having a bottom baseboard and a bottom metal layer formed on a disposing area of the bottom baseboard, a connection layer formed on the bottom metal layer, and a top substrate. The bottom metal layer has at least one corner having a first and a second outer lateral surface, and an outer connection surface. A first extension line is formed from a first extreme point of the first outer lateral surface, and a second extension line is formed from a second extreme point of the second outer lateral surface. A first exposing area of the bottom baseboard is formed by connecting the first and second extreme points and a cross point of the first and second extreme points. The top substrate connects to the connection layer to form a hollow chamber between the top and bottom substrates.
Abstract:
A trace structure of fine-pitch pattern includes a connection portion, a first conductive wire portion and a second conductive wire portion, the first conductive wire portion comprises a first section and a second section connected to the first section, the first section connects to the connection portion, the second conductive wire portion comprises a third section and a fourth section connected to the third section, the third section connects to the connection portion, wherein an etching space closed on three sides is formed by the connection portion, the third section and the first section, a first spacing is defined between the third section and the first section, a second spacing is defined between the fourth section and the second section, wherein the first spacing is larger than the second spacing so as to make an metal layer within the etching space completely removed to avoid metal layer residues.