Abstract:
In one embodiment, an apparatus includes a plurality of optical module ports in communication with a physical layer device in a network device. Communication of signals from the physical layer device to the optical module ports is configured such that the signals received at the optical module ports adjacent to one another are at different phases to reduce electromagnetic interference associated with the optical module ports.
Abstract:
In one embodiment, an apparatus includes an array of transformers and common mode chokes each comprising a magnetic core and windings wound around the magnetic core at opposing locations on the magnetic core, and a retaining groove on each of the magnetic cores to maintain the windings in their opposing locations on the magnetic core. The transformers and common mode chokes are positioned in the array with the windings on each of the magnetic cores located offset to the windings of adjacent magnetic cores in the array to reduce crosstalk and improve common mode noise rejection.
Abstract:
In one embodiment, an apparatus includes a plurality of optical module ports in communication with a physical layer device in a network device. Communication of signals from the physical layer device to the optical module ports is configured such that the signals received at the optical module ports adjacent to one another are at different phases to reduce electromagnetic interference associated with the optical module ports.
Abstract:
In one embodiment, an apparatus includes an array of transformers and common mode chokes each comprising a magnetic core and windings wound around the magnetic core at opposing locations on the magnetic core, and a retaining groove on each of the magnetic cores to maintain the windings in their opposing locations on the magnetic core. The transformers and common mode chokes are positioned in the array with the windings on each of the magnetic cores located offset to the windings of adjacent magnetic cores in the array to reduce crosstalk and improve common mode noise rejection.
Abstract:
An electrical device includes a core structure having a first core section, a second core section, and a third core section. The electrical device further includes a first coil electrically coupled to the first core section and the second core section to form a choke and a primary winding of a transformer. The choke is configured to reduce common mode noise for an electrical signal received by the electrical device, and the primary winding of the transformer is configured to induce a magnetic field on the third core section. The electrical device also includes a second coil electrically coupled to the third core section, which forms a secondary winding of the transformer and receives electromagnetic energy from the magnetic field induced by the primary winding of the transformer.
Abstract:
An electrical device includes a core structure having a first core section, a second core section, and a third core section. The electrical device further includes a first coil electrically coupled to the first core section and the second core section to form a choke and a primary winding of a transformer. The choke is configured to reduce common mode noise for an electrical signal received by the electrical device, and the primary winding of the transformer is configured to induce a magnetic field on the third core section. The electrical device also includes a second coil electrically coupled to the third core section, which forms a secondary winding of the transformer and receives electromagnetic energy from the magnetic field induced by the primary winding of the transformer.
Abstract:
Presented herein is a modular connector with electromagnetic interference suppression. The modular connector includes a substrate, at least one set of spring pins, and a ferrite component. Each spring in the at least one set of springs includes a first portion adjacent the substrate and a second portion extending away from the substrate. The ferrite component surrounds the at least one set of spring pins, couples the at least one set of spring pins to the substrate, and is configured to suppress electromagnetic interference.
Abstract:
In one embodiment, an electronic device includes a generally toroidal magnetic core having a first extension portion coupled to a first location of the generally toroidal magnetic core and a second extension portion coupled to a second location of the generally toroidal magnetic core generally opposite the first location and a common mode choke comprising a first wire and a second wire wound around the first extension portion and the second extension portion in a same winding direction. The first wire winds around the generally toroidal magnetic core in a first direction, and the second wire winds around the generally toroidal magnetic core in a second direction to form a primary winding. The electronic device further includes a transformer comprising the primary winding and a secondary winding, wherein the secondary winding of the transformer comprises a third wire and a fourth wire wound around the generally toroidal magnetic core in opposite directions.
Abstract:
In one embodiment, a method includes positioning a first component for generating a differential signal on a printed circuit board, positioning a second component for receiving the differential signal on a printed circuit board, and routing a differential conductor pair on a path between the first component and the second component, wherein the path comprises at least one turn in which the differential conductor pair changes direction. A first conductor and a second conductor of the differential conductor pair each comprise a plurality of sets of bends proximate to the turn to provide skew compensation while reducing differential mode to common mode conversion and wherein each of the sets of bends in the second conductor is aligned with one of the sets of bends in the first conductor.
Abstract:
In one embodiment, an apparatus includes a plurality of transformers and a plurality of common mode chokes, each of the transformers and the common mode chokes comprising a magnetic core and windings wound around the magnetic core at generally opposite sides thereof. The transformers and common mode chokes are arranged in an array with the windings on each of the magnetic cores positioned generally orthogonal to the windings of adjacent magnetic cores in the array to reduce crosstalk and improve common mode noise rejection.