Abstract:
A polymeric material includes a polyisobutylene-polyurethane block copolymer. The polyisobutylene-polyurethane block copolymer includes soft segments, hard segments, and end groups. The soft segments include a polyisobutylene diol residue. The hard segments include a diisocyanate residue. The end groups are bonded by urea bonds to a portion of the diisocyanate residue. The end groups include a residue of a mono-functional amine.
Abstract:
A coating for an implantable medical device includes a poly(monochloro-p-xylylene) coating formed on at least a portion of the implantable medical device, and a layer including at least one of poly(ethylene glycol) and a poly(ethylene glycol) derivative linked to the poly(monochloro-p-xylylene) coating by covalent bonds.
Abstract:
A medical device made of a hybrid polymeric structure includes a tubular body including a first layer and a second layer. The first layer includes a fibrous matrix comprising a plurality of randomly oriented nanofibers made at least in part of a first polymeric material and pores formed between at least a portion of the nanofibers. The second layer is made at least in part of a second polymeric material. At least a portion of the second layer is disposed about and between the plurality of nanofibers such that at least a portion of the second polymeric material is embedded into at least a portion of the pores of the fibrous matrix.
Abstract:
A position sensor assembly includes a base member having a proximal portion, a distal portion, and an intermediate portion disposed therebetween and having a twisted configuration such that the proximal and distal portions are oriented in mutually orthogonal planes. At least first and second magnetic field sensors each including at least one magnetic field sensing element are disposed, respectively, on the proximal and distal portions of the base member. The base member further includes a first base member element defining the proximal portion of the base member, and a second base member element defining the distal portion of the base member, the first and second base member elements being electrically and mechanically connected at a joint.
Abstract:
A method for making a tubular medical device having a hybrid polymeric structure includes forming a first layer comprising a non-woven fibrous matrix made of a first polymeric material and forming a second layer comprising a second polymeric material about the first layer such that at least a portion of the second polymeric material of the second layer embeds into at least a portion of the first polymeric material of the first layer.
Abstract:
An active fixation lead may have a lead body formed at least in part from an inner member and an outer sheath. The inner member may include a pace/sense lumen and one or more cable lumens. The inner member may include one or more longitudinally extending crumple zones that are configured to reduce stress within the pace/sense lumen that could otherwise be caused by compressive forces applied to the lead.
Abstract:
A method of preventing infection resulting from implanting a medical device. The method includes installing a polymer device at least substantially within a subcutaneous pocket formed to contain a housing of the medical device, and installing the medical device housing in the subcutaneous pocket. The polymer device includes a bioresorbable polymer structure and an antimicrobial agent configured to elute from the polymer structure. The polymer device covers less than about 20% of the surface area of the medical device housing.
Abstract:
A method of making a solution including poly(ethylene terephthalate). The method includes dissolving poly(ethylene terephthalate) in a solvent mixture to form a solution, the solvent mixture including two solvent components. A Hansen Solubility Parameter Distance between the solvent mixture and HSP coordinates having a dispersion HSP of 18.02 MPa0.5, a polar HSP of 5.56 MPa0.5, and a hydrogen bonding HSP of 14.27 MPa0.5 is less than about 2 MPa0.5.
Abstract:
A method of making a solution including poly(ethylene terephthalate). The method includes dissolving poly(ethylene terephthalate) in a solvent mixture to form a solution, the solvent mixture including two solvent components. A Hansen Solubility Parameter Distance between the solvent mixture and HSP coordinates having a dispersion HSP of 18.02 MPa0.5, a polar HSP of 5.56 MPa0.5, and a hydrogen bonding HSP of 14.27 MPa0.5 is less than about 2 MPa0.5.
Abstract:
A medical electrical lead includes an insulative lead body extending from a distal region to a proximal region and a conductor disposed within the insulative lead body and extending from the proximal region to the distal region. An electrode is disposed on the insulative lead body and is in electrical contact with the conductor. The medical electrical lead also includes a cross-linked hydrophilic polymer coating disposed over at least a portion of the electrode. The cross-linked hydrophilic polymer coating includes a fibrous matrix comprising a plurality of discrete fibers and pores formed between at least a portion of the fibers and a hydrophilic polyethylene glycol-containing hydrogel network disposed within the pores of the fibrous matrix.