Abstract:
A seat assembly is revealed. A connection slot is formed around a circumference of a rear side of a support and an assembly block is projectingly arranged at a center of the connection slot. At least one channel penetrating from one side to the other side of the assembly block is formed on the assembly block. A cloth surface is covered from a front side to a rear side of the support and a circumference thereof is mounted into the connection slot. A frame formed by injection molding is to cover the circumference of the rear side of the support and fill into the connection slot and the channel so as to connect and secure the cloth surface with the frame as well as the support by multiple bends of the cloth surface and infiltration of frame material into pores of the cloth surface.
Abstract:
An exemplary metal structure (10, 30) includes a base portion (14, 34), a flange (122, 322), and an edge portion (1241, 3241). The base portion defines a circular flanged hole (12, 32). The flange extends from a top surface of the base portion and the flange surrounds the circular flanged hole. The edge portion is configured for connecting an inside surface of the flange and the top surface of the base portion. The edge portion includes an edge surface, and a ratio of a radius of the edge surface (1242, 3242) of the edge portion with respect to a thickness of the base portion is less than 0.4. A method for making a circular flanged hole in a metal sheet (15) is also provided.
Abstract:
A computer includes a housing whereon an opening is formed, and a containing space is formed inside the housing. The computer further includes a rotary module installed inside the containing space in a rotatable manner, a first magnetic component connected to an end of the rotary module, a second magnetic component disposed on a side of the first magnetic component for attracting or repulsing the first magnetic component so as to switch the rotary module in a first position or in a second position, and a switch for converting magnetic field of the second magnetic component so that the second magnetic attracts or repulses the first magnetic component.
Abstract:
An organic electro-luminescent device. The device comprises two electrodes and an organic electro-luminescent structure interposed therebetween. The electrodes are disposed on a substrate, one serving as an anode and the other as a cathode. The organic electro-luminescent structure comprises a fluorescent emissive layer, a phosphorescent emissive layer and a nondoped organic material layer interposed therebetween. The phosphorescent emissive layer has a host material. The nondoped organic material layer has a highest occupied molecular orbital (HOMO) energy level no higher than that of the host material in the phosphorescent emissive layer.
Abstract:
An electronic device includes a casing and a battery module removably locked to the casing. The casing includes a connecting wall, two inner side walls connected to opposite ends of the connecting wall and having pillars protruding therefrom, and a first magnetic member disposed at the connecting wall. The battery module includes a first side wall to abut against the connecting wall, and two second side walls connected to two opposite ends of the first sidewall. A second magnetic member is disposed at the first side wall and has a magnetic attraction force with the first magnetic member. Each second side wall is formed with a guiding groove extending along an insertion direction of the battery module for engaging a corresponding pillar.
Abstract:
A method for forming a periodic structure is disclosed. A structural layer and an optical modulation element are provided. A light is emitted to pass through the optical modulation element to irradiate interference strips on the structural layer. A photoelectrochemical etching (PEC) is performed to form the periodic structure according the interference strips irradiated on the structural layer.
Abstract:
An exemplary punch die (30) includes a lower die (40) and an upper die (50). The lower die includes a die core (45), a blank holder (417), and a cylinder (413) disposed in the lower die. The blank holder is disposed on a periphery of the die core. The cylinder is connected to the blank holder and provides a constant force to the blank holder. The upper die includes a punch core corresponding to the die core. A punch machine using the present punch die is also provided.
Abstract:
A light-emitting device is disclosed, including a light-emitting element and a surface plasmon coupling element, having an intermediary layer connected to the light-emitting element and a metal structure on the intermediary layer, wherein the intermediary layer is conductive under low-frequency injection current and has the characteristics as dielectric material in a wavelength range 100 nm˜20000 nm.
Abstract:
An organic electroluminescent device (OELD) is provided. The OELD includes a substrate, an anode, a cathode, a hole transport layer, an electron transport layer and an emission layer. The anode and the cathode are disposed on the substrate. The hole transport layer is disposed between the anode and the cathode. The electron transport layer is disposed between the hole transport layer and the cathode. The emission layer is disposed between the hole transport layer and the electron transport layer. The emission layer includes a host and a dopant. The chemical structure of the dopant is shown as the formula [I]: “M” is a metal atom whose atomic weight is greater than 40. “S” is selected from a group consisting of alkyl, alkoxy, haloalkyl, halogen, hydrogen and any other substituents.
Abstract:
A white organic light-emitting diode includes two symmetric emission layers and a middle emission layer. The two symmetric emission layers emit a first color light with approximately the same frequency components. The middle emission layer is located between the two symmetric emission layers. The middle emission layer emits a second color light with frequency components different from main frequency components of the first color light. When the voltage applied to the organic light-emitting diode changes and leads to a decrease of luminescent intensity of one of the symmetric emission layers, the other symmetric emission layer automatically increases the luminescent intensity to compensate for the reduced light intensity.