Abstract:
A multiphase charging circuit includes a first phase having a first switch and a second phase having a second switch to provide a system voltage for a system load, a control method of the multiphase charging circuit includes: generating a plurality of feedback control signals with generating each of feedback control signal based on a corresponding feedback signal, a ramp signal, a corresponding reference signal and a current flowing through the first phase; selecting one of the plurality of feedback control signals as a first enable signal; generating a first control signal of the first switch based on the first enable signal and a first time period control signal; generating a second enable signal by shifting a pre-determined phase difference to the first control signal; and generating a second control signal of the second switch based on the second enable signal and a second time period control signal.
Abstract:
A power bank having an input terminal; an output terminal; a battery; a bidirectional switch circuit coupled between the battery and the output terminal of the power bank; and a select circuit coupled between the input terminal and the output terminal of the power bank; wherein when the input terminal is wired up with a power source, and the load is powered by the power source, and meanwhile, the battery is charged by the power source via the select circuit and the bidirectional switch circuit; when the input terminal is disconnected from the power source, the load is powered by the battery via the bidirectional switch circuit.
Abstract:
A switching charger having a control circuit configured to provide a control signal; a power stage turned ON and OFF by the control signal; an inductor coupled between the power stage and a load; and an output capacitor coupled in parallel with the load; a current sense circuit integrated to the control circuit to sense a current flowing through the power stage.
Abstract:
A switching charger having a control circuit configured to provide a control signal; a power stage turned ON and OFF by the control signal; an inductor coupled between the power stage and a load; and an output capacitor coupled in parallel with the load; wherein the control circuit limits a current flowing through the inductor in a hysteretic window, and wherein the hysteretic window is adjusted according to an ON time of the control signal.
Abstract:
A battery charging system has a switching circuit and a control circuit. The switching circuit has a first switch, and the control circuit has a plurality of analog control loops and a digital control unit. Each of the analog control loops provides a loop control signal based on a corresponding feedback signal, a corresponding reference signal and a slope compensation signal. The digital control unit provides a switching control signal to control the first switch based on the plurality of analog control loops and a time period control signal, and the digital control unit turns ON or turns OFF the first switch automatically in response to one of the plurality of analog control loops.
Abstract:
A battery charging circuit has a first switching circuit and a second switching circuit coupled in parallel between an input port and a node, a first switch coupled between the node and a system ground, a second switch coupled between the node and an output port, and a control circuit. When an input voltage is higher than a system voltage, the control circuit controls the first switching circuit and the second switching circuit turned ON and OFF with interleaving, the first switch maintains OFF and the second switch maintains ON. When the input voltage is lower than the system voltage, the control circuit controls the first switch and the second switch turned ON and OFF, and at least one of the first switching circuit and the second switching circuit maintains ON.
Abstract:
A battery charging system has a switching circuit and a control circuit. The switching circuit has a first switch, and the control circuit has a plurality of analog control loops and a digital control unit. Each of the analog control loops provides a loop control signal based on a corresponding feedback signal, a corresponding reference signal and a slope compensation signal. The digital control unit provides a switching control signal to control the first switch based on the plurality of analog control loops and a time period control signal, and the digital control unit turns ON or turns OFF the first switch automatically in response to one of the plurality of analog control loops.
Abstract:
A power bank circuit controlling power switches to operate at different modes in accordance with different external coupling situations is discussed. The power bank circuit may be coupled to either a power source, a digital device, or a plurality of series coupled batteries at a high voltage port; and may be coupled to either a power source, a digital device, or a single battery at a low voltage port.
Abstract:
An integrated circuit for a power management circuit is provided. The integrated circuit has a power input pin, a system output pin for providing an output voltage, a switching node pin coupled to a battery through an inductor, a ground pin, a first switch coupled between the system output pin and the switching node pin, a second switch coupled between the switching node pin and the ground pin, and a control circuit. The control circuit controls the first switch and second switch to operate in a buck mode or a boost mode. The first switch is turned OFF for a constant time, and the second switch is turned ON for the constant time.
Abstract:
A battery balancing method and circuit for balancing the voltages between battery units with a fly capacitor. In a first time period of a switching cycle, the first battery unit is used to charge the fly capacitor or the first battery unit is used to discharge the fly capacitor, depending on which of the first battery unit and the fly capacitor having a larger voltage value; and in a second time period of the switching cycle, the second battery unit is used to charge the fly capacitor or the second battery unit is used to discharge the fly capacitor, depending on which of the second battery unit and the fly capacitor having a larger voltage value